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Abstract system can manage the FPL and share it out between com-
peting requests from other applications.

Reconfigurable processor hybrids are becoming an ac- The paper is structured as follows: in Section 2 we dis-
cepted solution in the embedded systems domain, but haveuss our system requirements, and in Section 3 relate this to
yet to gain acceptance in the general purpose workstation existing work. In Section 4 we propose and describe a new
domain. One problem with current solutions is their lack of architecture which fully supports the requirements outlined
support for the dynamic workloads and resource demandsin Section 2. In Section 5 we demonstrate that the architec-
of a general purpose workstation. In this paper we describe ture is practicable, and in Section 6 we conclude the paper.
and demonstrate a reconfigurable processor architecture
that lets the operating system.dypamica}lly share the FPL 9 System Requirements
resource between a set of applications without the manage-
ment overheads negating the benefit of having the extra re-

source. We wish to produce a system where software applica-

tions running on a general purpose workstation using a tra-
ditional operating system can take advantage of FPL to
) speed up their core algorithms. The system must support
1 Introduction a dynamic mixture of traditional pure software applications
and applications accelerated with custom hardware. The
There has been recent research and commercial interesilemands on the FPL resource made by applications will be
in bringing together Field Programmable Logic (FPL) de- dynamic and unpredictable, and may at times exceed the
vices and microprocessors in a single device. Although FPL physical limits of the resource. In this system the operating
devices, such as Field Programmable Gate Arrays (FPGAskystem should be able to manage these dynamic requests
provide a flexible medium in which to produce problem so- and share out the resource between applications, ensuring
lutions, some activities, like general control flow, are better all applications make timely progress.
handled in software. However existing solutions assume an We envisage a simple interface between an application
embedded systems approach, where the FPL is the main foand its custom hardware. The custom hardware cores will
cus. Instead we are interested in letting software applica-behave like new instructions within the system, allowing ap-
tions on a general purpose workstation benefit from accesslications to tailor the instruction set to their own needs.
to reconfigurable logic in order to accelerate their core algo- Applications will register custom instructions with the op-
rithms. This requires a different focus to designing such a erating system using a process unique Circuit ID (CID); the
processor, particularly with respect to the interface betweenoperating system will then be responsible for ensuring that
the software and hardware. In a general purpose workstathe new instructions can be found when they are needed
tion the number of applications wanting to use the FPL and by the application, without the application having to explic-
the amount of FPL they will require cannot be predicted itly load instructions onto the FPL. To help during times
and will be constantly changing. As such we need an ef- of contention, as well as including a hardware description,
fective way of sharing the FPL resource dynamically, fairly, an application may provide a software alternative to the in-
and securely, which is the focus of this work. We describe struction. The operating system can defer execution to the
a suitable interface between the software and custom hardsoftware alternative rather than swapping circuits on and off
ware on a reconfigurable processor such that an operatinghe processor if the FPL is full. We are interested in seeing if



this arrangement will have a benefit for scheduling custom other drawback with these devices is that the application
instructions. programmer has to carefully manage the memory interface

Multiple applications may wish to use multiple circuits on the processor when communicating with custom hard-
at once; given the size of modern FPL devices, we feel it ware to achieve best performance. The MMU and caches
should be possible for multiple circuits to reside on the array expect to be talking to memory devices and optimize trans-
at once, to reduce the need for moving circuits. However, actions on this assumption. This places more strain on the
sharing the FPL can cause the system to suffer from internalprogrammer and adds to the latency of using custom hard-
and external contention. Internal contention is when an ap-ware. Finally, traveling off the processor and across buses to
plication is forced to have only a single circuit on the FPL custom hardware is itself quite slow compared to traditional
fabric at once. This could lead to excessive swapping if data processing operations. Ideally our solution would not
an algorithm requires more than one circuit in a tight loop. need to move off the standard processor datapath during
External contention occurs when multiple applications are computation.

using circuits simultaneously, but the array can only support Combining FPL into the datapath of a processor has been
a single application’s circuits on the array at once; if more he pasis for many research projects, such as PRISC [7],
than one application is using custom instructions then appli- coMPARE [8], GARP [5], the SHARK DSP Hybrid [3],
cations will need to reload their circuits after each context 5 OneChip [11]. Combining the FPL resource into the
switch. _ processor's datapath greatly simplifies the interface be-
In addition to new management problems, adding an yyeen the two parts, with custom hardware being accessed
FPL resource to a processor in a general purpose workstagjrectly by using special instructions. This simplifies the in-
.tlon raises a new S?t Of, security issues. Physically, it makesierface and reduces the issue latency, but at the cost of a less
it possible for applications to physically damage the pro- feyiple interface and less bandwidth. The bandwidth issue
cessor and attached devices through misconfiguration [4].can pe tackled partly by using a wider register file to feed
Functionally, the operating system needs to ensure that cirype FPL, similar to how modern processors use wider reg-
cuits will behave (_:orrgctly, responding to events such as in-jster files to feed SIMD units [6], or by modifying the dat-
terrupts and terminating in a timely fashion. apath to allow more than the conventional two registers to
drive the FPL, as is done in COMPARE. The main concern
3 Related Work with the existing approaches are the restrictions in sharing
the FPL resource. Architectures such as COMPARE, GARP,

The notion of processor hybrids is not new, with there be- @nd the SHARK DSP Hybrid allow only a single circuit to

ing several existing research projects and commercial prod-€ l0aded onto the array at once, an approach which suf-
ucts based along these lines. fers from both internal and external contention. OneChip

Commercial solutions such as the Xilinx Virtex—ll allows multiple circuits to reside on the FPL array, but only
Pro [13], Altera Excalibur [1], and Triscend A7 [10] of- @S part of a single configgration, so it reduces, but does not
fer one or more microprocessor cores on the same die a§€move, internal contention and still suffers from external
an FPL resource. These devices connect the processor angPntention.
the configurable logic using a memory mapped interface. The most flexible approach is that taken by PRISC,
Custom hardware cores are connected to a bus containingvhich is aimed at a workstation like environment. PRISC
address, data, and control lines which are connected to theises a set of Programmable Function Units (PFUs) into
processor's memory bus; the processor may then access thehich applications can load combinatorial circuits that can
devices as if they were memories. The cores are responsibléhen be called using a traditional instruction call. Each PFU
for responding to a particular range of memory addresses has an ID register into which an application specific opcode
which are set at design time. This interface works well for for that circuit is loaded. When an instruction invokes a
embedded systems, but is less suited to a more dynamic enPFU, the opcode in the instruction is compared with the
vironment. Although the memory mapped solution, given registers: if there is a match the circuit is used, otherwise
a sufficiently large segment of the address space, prevents: processor exception is thrown allowing the operating sys-
internal contention, this solution suffers from external con- tem to respond to the event. The separate PFUs solve the
tention. It is not reasonably possible to ensure that no twoproblem of internal contention, and by wiping the ID reg-
applications will use the same address ranges for their cir-isters on a context switch and reloading them with a partic-
cuits. A possible solution is to allow the operating system ular process’s IDs as it needs them, it also solves the prob-
to set the address ranges used in the circuits before theyem of external contention. There are drawbacks with the
are loaded, and then program the virtual memory map for PRISC architecture however. Firstly, we would like cus-
the application appropriately, though this requires the op- tom instructions to use sequential logic to allow for more
erating system to modify the applications’ bitstreams. An- interesting applications. Secondly the dispatch mechanism



is not very flexible: it does not support multiple opcodes should be kept to a minimum, which means we allow regis-
for circuits, meaning circuits can not be shared internally, tersin CLBs, but not the large RAM blocks found in modern
and requires the ID registers to be reset on a context switch FPGA fabrics.
Despite these drawbacks the PRISC architecture is the best Moving configuration data on and off the processor at
approach of those discussed for a workstation environmenttimes of contention adds a significant overhead to the sys-
tem, reducing the benefit of having the new resource; for ex-
4 The Proteus Architecture ample, in the ProteanARM each custom instruction requires
54 Kbytes of data to be transfered for a configuration. We
can reduce the amount of data that needs to be transferred
by noting that we do not need to save entire configuration,
just the configuration information for the stateful elements.
_Thus we split the configuration into two sections: config-
uration for static elements, like LUT contents and routing,
and configuration for loading state into CLB registers. The
hardware should either support two separate configuration
places, or allow a partial configuration containing just the
state information to be stored and loaded separately form
the rest of the configuration.

Although there are a lot of good architectures combin-
ing reconfigurable logic and a microprocessor, no one ar-
chitecture is completely suitable for our target domain, so
we propose a new architecture that meets all the require
ments for supporting reconfigurable logic in a workstation
like environment. Our approach described below is similar
in general layout to the PRISC architecture, but differs in
terms of the dispatch mechanism and uses a richer FPL fab
ric, which dramatically changes the run—time management
costs.

We propose placing the FPL resource into a new function
unit on the processor to sit alongside the traditional units, 4.2 The Dispatch Mechanism
such as integer and floating point units. This unit will con-
tain its own register file and a series of PFUs connected to  The dispatch mechanism is responsible for mapping an
that register file with a traditional two word input/one word application’s request for a circuit using the associated CID
output interface as used for other instructions. Applications to the appropriate custom instruction, i.e., dispatching the
access their custom instructions by using the CID they havecustom hardware or the nominated software alternative, or
associated with them. When the instruction is decoded, theif no suitable mapping occurs notifying the operating sys-
dispatch mechanism will convert this CID into a physical tem. The PRISC system, with its ID registers for each PFU,

PFU reference. provides an adequate mechanism but has some limitations
we would like to remove: it needs reprogramming on every
4.1 The FPL Fabric process switch, does not support mapping multiple opcodes

to a single circuit, and does not support the software alter-

Although the focus of this work is the management of native mapping.
the circuits on the array, the makeup of the fabric has im-  We want a system that will take a PFU execution instruc-
portant consequences on the management costs and systetion in the decode stage of the processor pipeline and re-
security. First, similar to the PRISC architecture, we do solve it in one of three ways. The preferred resolution is
not require 1/0 Blocks (I0OBs), as the PFUs only connect to match the current process’s CID to a PFU. If a match is
to the processor datapath, and do not need to interface difound then the instruction is decoded as a invocation of a
rectly with device pins. This removes one potential security custom hardware core in a PFU. The next option is that a
threat, as having I0Bs would give potential for software to mapping has been recorded between the CID and the mem-
cause physical damage to the system by driving pins incor-ory address of a software alternative. If this mapping is
rectly [4]. In addition we assume a mux based routing fab- found then the instruction is decoded as a special branch
ric, which prevents the array from being misconfigured such to the software alternative (see below for more details on
that short circuits can occur. In our initial ProteanARM im- the software dispatch). Finally, if no mapping is found then
plementation (see Section 5) we assume an array based othe processor will cause an exception to occur, causing the
the Xilinx Virtex fabric [12], which uses mux based routing. operating system to be invoked. The operating system can

Unlike PRISC, we want a stateful FPL array in the PFUs then either terminate the process if the mapping request was
to allow more complex sequential logic based circuits. This illegal, or load the custom instruction and reissue the appli-
has two important consequences on the architecture: stateation from where it faulted.
must be preserved as circuits move in and out of PFUs and The dispatch mechanism needs a way to uniquely map
a mechanism is required to ensure that instructions in PFUsa process’s CID to a given custom instruction instance. To
terminate (which we address in Section 4.4). Although we create a globally unique nhamespace we combine an appli-
all some state, we believe that application state should re-cation’s CID for a custom instruction with the Process ID
side in either the register file or main memory, so FPL state (PID) which is already held on the processor in workstation



e e also dispatches to software then the contents of the special
(p.ifec“.m[> S . ool e "Sg:j;m purpose registers will be lost, potentially before they were
mermeet finished with. However, we consider this bad practice: us-
CAM RAM CAM RAM . . . . . .
ing a custom instruction whilst trying to reduce contention
'@ on the PFUs does not make sense; execution only reached

Decode to RALU Decode to Branch and Link

the software alternative since there was not room for custom

Figure 1. The proteus dispatch mechanism. instructions in hardware.

4.4 Long Instruction Handling
class processors. The PID and CID pair provide a system
unique ID tuple for referring to a custom instruction, which  In the Proteus Architecture custom hardware instructions
means the mapping hardware will not need to be flushedmay run for multiple cycles. Long running instructions have
on a context switch like PRISC. An important distinction important consequences on a processor though, in that they
to note is that an ID tuple is not the absolute name of a either must have an upper bound on the number of cycles
custom instruction, but rather a custom instruction can havethey can take to ensure they do not lock up the processor or
many ID tuples associated with it to facilitate sharing cus- increase interrupt latency, or the instructions must be inter-
tom instructions. This complicates the mapping hardware; ruptible. The simplest solution is to simply limit the number
it is no longer sufficient to just associate an ID tuple with a of cycles a custom instruction can take, but we would prefer
PFU. Instead we use a Translation Lookaside Buffer (TLB) for instructions not to be constrained in that fashion, so have
arrangement, as shown in Figure 1. A TLB consists of a opted to make the system interruptible. During execution of
Content Addressable Memory (CAM) used to store ID tu- an instruction it can be interrupted by processor exceptions
ples which is used as an index into a RAM containing either and then restarted from the point at which it was interrupted
the PFU number in which the circuit resides for circuit dis- transparently without the application being aware that this
patch, or the software address for software dispatch. Thisoccurred.
arrangement allows for the mapping of multiple ID tuples  The interface to PFUs is designed with two additional
to a single circuit or software routine. This has one draw- control signals: an init signal going in and a completion sig-
back: more mappings may be needed that can fitin the TLB,nal coming out. When a custom instruction is first invoked
so a custom instruction that is loaded in hardware may faultthe init signal goes high for a cycle, indicating to the custom
if its mapping has been pushed out the TLB. When the op- hardware that this is the first cycle of an invocation, allow-
erating system sees a custom instruction fault it must firsting it to set itself up accordingly. The circuit is then clocked
check if it is just a mapping fault before attempting to load until the completion goes high, which tells the processor to

the hardware. stop clocking the PFU and to store the value produced by
the PFU appropriately. When an instruction is interrupted,
4.3 Software Dispatch we can continue execution simply by reissuing the invoca-

tion instruction and not setting the init signal to high. We

Dispatching to a software alternative for custom hard- do this by using a 1 bit status register to feed back the com-
ware requires the destination function to be able to decodeP!€tion signal into the init signal. On reset all the status
the original instruction to work out which operands it has to registers are set to 1, so when an instruction is started the
use. This can be a time consuming operation, so we providecircuit will see the init signal high. For subsequent cycles
hardware support to speed this up. the done signal will flow through the register and set the init

The solution we have chosen is to make the FPL unit Signal low. If the instruction is then interrupted and reissued
remember the operands in special purpose registers, bi?[_he init si_gnal will be low on reissue, so executign will con-
enough to hold the two source operands and the resulfinue as if nothing had happened. On completion the done
operand. These registers are filled during a special branct$ignal will go high, placing a 1 in the status register again
instruction used to move execution to the software alterna-"€ady for the next invocation.
tive. Special load/store instructions can then be used that
work with the special purpose registers to provide the data4.5 Usage Statistics
access needed without the routine even needing to see the
original operands explicitly. Additional instructions also To aid the operating system in deciding which circuits it
exist to allow the operating system to read and write the is best to swap off the array during periods of contention,
registers directly, allowing them to be preserved over a pro-the set of PFUs each have associated with them a register
cess switch. One subtle problem with this mechanism is thatcontaining a count of the times that instruction has com-
if the software alternative uses a custom instruction which pleted. These registers can be read and cleared by the op-



erating system. It can then use these registers to implement Basic Scheduling Test
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5 Demonstration 6e+08

5e+08 [

4e+08

The ProteanARM is a demonstration of the Proteus Ar-
chitecture. It originally appeared in [2] without manage-
ment support, to demonstrate that the basic datapath was  **®

Completion time in clock cycles

3e+08

sufficient to provide applications with a performance in- le+08 y
crease. We extended the simulator model to include the o s : . : . = .
modifications outlined in Section 4. No. concurrent process instances

The ProteanARM is based on an ARM7TDMI proces-
sor, and adds the reconfigurable execution unit to the data-
path as an on-chip coprocessor, the standard way of adding

additional function units to the ARM. The coprocessor con- :
sists of a 16 element 32 bit wide register file connected to are run concurrently, and the other uses two custom instruc-
tions in a tight loop, so contention should occur after just

a set of PFUs and the dispatch hardware described above, ) Each heduli
For experimental purposes we limited the processor to fourtWO concurrent instances. Each test uses two scheduling
PFUs of 500 Configuration Logic Blocks (CLBS) (we esti- guanta sizes to attempt to show the difference between batch

mate that the chip could support twice that number of I:,FUS'scheduIing and interactive scheduling. A schedu_ling quanta
but limit it in order to demonstrate the system behaviour 0f 10ms was used to demonsirate baich scheduling based on

under contention). The only change we had to make tothe Linux batch scheduling quanta. A shorter quanta of 1ms

the ARM core was to change the coprocessor interface and"@s used to indi_catg performance on amore interactive sys-
control logic to allow the coprocessor to generate a mem- €M where applications are not getting their full quanta. In

ory address for the software dispatch mechanism, which isthe final system gpplication_s using the same circui_ts WO.UId
not possible under the normal interface. Otherwise all the attempt to share instances, just changing the state in a single
changes are limited to the coprocessor unit PFU; however we are interested in the effect of overloading

POrSCHE (Proteus Operating System and Configurablehere' so sharing is not allowed.
Hardware Environment) is a simple operating system ker-
nel developed from scratch to demonstrate the ProteanARM
platform is practicable. It uses a simple pre—emptive round5.1.1  Circuit Switching Test
robin process scheduler to run multiple processes. The basic
POrSCHE kernel without PFU support runs successfully on |n this test we ran each complete set with a round robin
actual ARM hardware. POrSCHE implements a Custom In- and random circuit replacement policy. These results can
struction Scheduler (CIS) as part of the kernel, which man- pe seen in Figure 2. In all cases the increase in completion
ages the circuits registered with the OS by different appli- time is linear with the number of concurrent processes un-
cations. The CIS is responsible for loading and unloading til PFU contention occurs. This occurs after four processes

Figure 2. Results for basic scheduling test.

circuits and for managing the dispatch hardware. for the test applications with a single circuit and after two
_ processes for the test application with two circuits. At this
5.1 Experiments point context switch overheads reduce the overall perfor-

mance. At a 10ms quantum value the extra overhead has

To demonstrate the platform working we ran two initial only a small effect of completion times, however at the 1ms
scheduling experiments, testing both basic scheduling andquantum value the increased number of switches causes a
using software dispatch as an alternative to circuit swap-more significant performance reduction. The round robin
ping. For each experiment we ran three sets of runs with policy generally performs worse than the random policy in
between 1 and 8 instances of a particular test application:most cases. This is due to bad interaction with the round
alpha blending image processing, twofish encryption, androbin process scheduler, which typically means applications
audio echo processing. Two of the test applications (al- lose their circuits after a context switch. Note that all runs
pha blending and twofish encryption) use a single customperformed an order of magnitude faster than the unacceler-
instruction so should cause contention after four processesated applications.
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7e+08 Alpha, Soft, 10ms e processor architecture that is suitable for use in a worksta-
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tion environment, where the operating system manages the
FPL resource and the management does not negate the ben-
efits of having the FPL.

Having done the basic work we are now going on to con-
sider the higher level issues about how a programmer uti-
lizes such a system from a programming language perspec-
tive and to test the performance of the system with more
dynamic scheduling loads.
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Figure 3. Results for software dispatch test. _ _
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