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Abstract

Reconfigurable processor hybrids are becoming an ac-
cepted solution in the embedded systems domain, but have
yet to gain acceptance in the general purpose workstation
domain. One problem with current solutions is their lack of
support for the dynamic workloads and resource demands
of a general purpose workstation. In this paper we describe
and demonstrate a reconfigurable processor architecture
that lets the operating system dynamically share the FPL
resource between a set of applications without the manage-
ment overheads negating the benefit of having the extra re-
source.

1 Introduction

There has been recent research and commercial interest
in bringing together Field Programmable Logic (FPL) de-
vices and microprocessors in a single device. Although FPL
devices, such as Field Programmable Gate Arrays (FPGAs)
provide a flexible medium in which to produce problem so-
lutions, some activities, like general control flow, are better
handled in software. However existing solutions assume an
embedded systems approach, where the FPL is the main fo-
cus. Instead we are interested in letting software applica-
tions on a general purpose workstation benefit from access
to reconfigurable logic in order to accelerate their core algo-
rithms. This requires a different focus to designing such a
processor, particularly with respect to the interface between
the software and hardware. In a general purpose worksta-
tion the number of applications wanting to use the FPL and
the amount of FPL they will require cannot be predicted
and will be constantly changing. As such we need an ef-
fective way of sharing the FPL resource dynamically, fairly,
and securely, which is the focus of this work. We describe
a suitable interface between the software and custom hard-
ware on a reconfigurable processor such that an operating

system can manage the FPL and share it out between com-
peting requests from other applications.

The paper is structured as follows: in Section 2 we dis-
cuss our system requirements, and in Section 3 relate this to
existing work. In Section 4 we propose and describe a new
architecture which fully supports the requirements outlined
in Section 2. In Section 5 we demonstrate that the architec-
ture is practicable, and in Section 6 we conclude the paper.

2 System Requirements

We wish to produce a system where software applica-
tions running on a general purpose workstation using a tra-
ditional operating system can take advantage of FPL to
speed up their core algorithms. The system must support
a dynamic mixture of traditional pure software applications
and applications accelerated with custom hardware. The
demands on the FPL resource made by applications will be
dynamic and unpredictable, and may at times exceed the
physical limits of the resource. In this system the operating
system should be able to manage these dynamic requests
and share out the resource between applications, ensuring
all applications make timely progress.

We envisage a simple interface between an application
and its custom hardware. The custom hardware cores will
behave like new instructions within the system, allowing ap-
plications to tailor the instruction set to their own needs.
Applications will register custom instructions with the op-
erating system using a process unique Circuit ID (CID); the
operating system will then be responsible for ensuring that
the new instructions can be found when they are needed
by the application, without the application having to explic-
itly load instructions onto the FPL. To help during times
of contention, as well as including a hardware description,
an application may provide a software alternative to the in-
struction. The operating system can defer execution to the
software alternative rather than swapping circuits on and off
the processor if the FPL is full. We are interested in seeing if
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this arrangement will have a benefit for scheduling custom
instructions.

Multiple applications may wish to use multiple circuits
at once; given the size of modern FPL devices, we feel it
should be possible for multiple circuits to reside on the array
at once, to reduce the need for moving circuits. However,
sharing the FPL can cause the system to suffer from internal
and external contention. Internal contention is when an ap-
plication is forced to have only a single circuit on the FPL
fabric at once. This could lead to excessive swapping if
an algorithm requires more than one circuit in a tight loop.
External contention occurs when multiple applications are
using circuits simultaneously, but the array can only support
a single application’s circuits on the array at once; if more
than one application is using custom instructions then appli-
cations will need to reload their circuits after each context
switch.

In addition to new management problems, adding an
FPL resource to a processor in a general purpose worksta-
tion raises a new set of security issues. Physically, it makes
it possible for applications to physically damage the pro-
cessor and attached devices through misconfiguration [4].
Functionally, the operating system needs to ensure that cir-
cuits will behave correctly, responding to events such as in-
terrupts and terminating in a timely fashion.

3 Related Work

The notion of processor hybrids is not new, with there be-
ing several existing research projects and commercial prod-
ucts based along these lines.

Commercial solutions such as the Xilinx Virtex–II
Pro [13], Altera Excalibur [1], and Triscend A7 [10] of-
fer one or more microprocessor cores on the same die as
an FPL resource. These devices connect the processor and
the configurable logic using a memory mapped interface.
Custom hardware cores are connected to a bus containing
address, data, and control lines which are connected to the
processor’s memory bus; the processor may then access the
devices as if they were memories. The cores are responsible
for responding to a particular range of memory addresses,
which are set at design time. This interface works well for
embedded systems, but is less suited to a more dynamic en-
vironment. Although the memory mapped solution, given
a sufficiently large segment of the address space, prevents
internal contention, this solution suffers from external con-
tention. It is not reasonably possible to ensure that no two
applications will use the same address ranges for their cir-
cuits. A possible solution is to allow the operating system
to set the address ranges used in the circuits before they
are loaded, and then program the virtual memory map for
the application appropriately, though this requires the op-
erating system to modify the applications’ bitstreams. An-

other drawback with these devices is that the application
programmer has to carefully manage the memory interface
on the processor when communicating with custom hard-
ware to achieve best performance. The MMU and caches
expect to be talking to memory devices and optimize trans-
actions on this assumption. This places more strain on the
programmer and adds to the latency of using custom hard-
ware. Finally, traveling off the processor and across buses to
custom hardware is itself quite slow compared to traditional
data processing operations. Ideally our solution would not
need to move off the standard processor datapath during
computation.

Combining FPL into the datapath of a processor has been
the basis for many research projects, such as PRISC [7],
CoMPARE [8], GARP [5], the SHARK DSP Hybrid [3],
and OneChip [11]. Combining the FPL resource into the
processor’s datapath greatly simplifies the interface be-
tween the two parts, with custom hardware being accessed
directly by using special instructions. This simplifies the in-
terface and reduces the issue latency, but at the cost of a less
flexible interface and less bandwidth. The bandwidth issue
can be tackled partly by using a wider register file to feed
the FPL, similar to how modern processors use wider reg-
ister files to feed SIMD units [6], or by modifying the dat-
apath to allow more than the conventional two registers to
drive the FPL, as is done in CoMPARE. The main concern
with the existing approaches are the restrictions in sharing
the FPL resource. Architectures such as CoMPARE, GARP,
and the SHARK DSP Hybrid allow only a single circuit to
be loaded onto the array at once, an approach which suf-
fers from both internal and external contention. OneChip
allows multiple circuits to reside on the FPL array, but only
as part of a single configuration, so it reduces, but does not
remove, internal contention and still suffers from external
contention.

The most flexible approach is that taken by PRISC,
which is aimed at a workstation like environment. PRISC
uses a set of Programmable Function Units (PFUs) into
which applications can load combinatorial circuits that can
then be called using a traditional instruction call. Each PFU
has an ID register into which an application specific opcode
for that circuit is loaded. When an instruction invokes a
PFU, the opcode in the instruction is compared with the
registers: if there is a match the circuit is used, otherwise
a processor exception is thrown allowing the operating sys-
tem to respond to the event. The separate PFUs solve the
problem of internal contention, and by wiping the ID reg-
isters on a context switch and reloading them with a partic-
ular process’s IDs as it needs them, it also solves the prob-
lem of external contention. There are drawbacks with the
PRISC architecture however. Firstly, we would like cus-
tom instructions to use sequential logic to allow for more
interesting applications. Secondly the dispatch mechanism
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is not very flexible: it does not support multiple opcodes
for circuits, meaning circuits can not be shared internally,
and requires the ID registers to be reset on a context switch.
Despite these drawbacks the PRISC architecture is the best
approach of those discussed for a workstation environment.

4 The Proteus Architecture

Although there are a lot of good architectures combin-
ing reconfigurable logic and a microprocessor, no one ar-
chitecture is completely suitable for our target domain, so
we propose a new architecture that meets all the require-
ments for supporting reconfigurable logic in a workstation
like environment. Our approach described below is similar
in general layout to the PRISC architecture, but differs in
terms of the dispatch mechanism and uses a richer FPL fab-
ric, which dramatically changes the run–time management
costs.

We propose placing the FPL resource into a new function
unit on the processor to sit alongside the traditional units,
such as integer and floating point units. This unit will con-
tain its own register file and a series of PFUs connected to
that register file with a traditional two word input/one word
output interface as used for other instructions. Applications
access their custom instructions by using the CID they have
associated with them. When the instruction is decoded, the
dispatch mechanism will convert this CID into a physical
PFU reference.

4.1 The FPL Fabric

Although the focus of this work is the management of
the circuits on the array, the makeup of the fabric has im-
portant consequences on the management costs and system
security. First, similar to the PRISC architecture, we do
not require I/O Blocks (IOBs), as the PFUs only connect
to the processor datapath, and do not need to interface di-
rectly with device pins. This removes one potential security
threat, as having IOBs would give potential for software to
cause physical damage to the system by driving pins incor-
rectly [4]. In addition we assume a mux based routing fab-
ric, which prevents the array from being misconfigured such
that short circuits can occur. In our initial ProteanARM im-
plementation (see Section 5) we assume an array based on
the Xilinx Virtex fabric [12], which uses mux based routing.

Unlike PRISC, we want a stateful FPL array in the PFUs
to allow more complex sequential logic based circuits. This
has two important consequences on the architecture: state
must be preserved as circuits move in and out of PFUs and
a mechanism is required to ensure that instructions in PFUs
terminate (which we address in Section 4.4). Although we
all some state, we believe that application state should re-
side in either the register file or main memory, so FPL state

should be kept to a minimum, which means we allow regis-
ters in CLBs, but not the large RAM blocks found in modern
FPGA fabrics.

Moving configuration data on and off the processor at
times of contention adds a significant overhead to the sys-
tem, reducing the benefit of having the new resource; for ex-
ample, in the ProteanARM each custom instruction requires
54 Kbytes of data to be transfered for a configuration. We
can reduce the amount of data that needs to be transferred
by noting that we do not need to save entire configuration,
just the configuration information for the stateful elements.
Thus we split the configuration into two sections: config-
uration for static elements, like LUT contents and routing,
and configuration for loading state into CLB registers. The
hardware should either support two separate configuration
places, or allow a partial configuration containing just the
state information to be stored and loaded separately form
the rest of the configuration.

4.2 The Dispatch Mechanism

The dispatch mechanism is responsible for mapping an
application’s request for a circuit using the associated CID
to the appropriate custom instruction, i.e., dispatching the
custom hardware or the nominated software alternative, or
if no suitable mapping occurs notifying the operating sys-
tem. The PRISC system, with its ID registers for each PFU,
provides an adequate mechanism but has some limitations
we would like to remove: it needs reprogramming on every
process switch, does not support mapping multiple opcodes
to a single circuit, and does not support the software alter-
native mapping.

We want a system that will take a PFU execution instruc-
tion in the decode stage of the processor pipeline and re-
solve it in one of three ways. The preferred resolution is
to match the current process’s CID to a PFU. If a match is
found then the instruction is decoded as a invocation of a
custom hardware core in a PFU. The next option is that a
mapping has been recorded between the CID and the mem-
ory address of a software alternative. If this mapping is
found then the instruction is decoded as a special branch
to the software alternative (see below for more details on
the software dispatch). Finally, if no mapping is found then
the processor will cause an exception to occur, causing the
operating system to be invoked. The operating system can
then either terminate the process if the mapping request was
illegal, or load the custom instruction and reissue the appli-
cation from where it faulted.

The dispatch mechanism needs a way to uniquely map
a process’s CID to a given custom instruction instance. To
create a globally unique namespace we combine an appli-
cation’s CID for a custom instruction with the Process ID
(PID) which is already held on the processor in workstation
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Figure 1. The proteus dispatch mechanism.

class processors. The PID and CID pair provide a system
unique ID tuple for referring to a custom instruction, which
means the mapping hardware will not need to be flushed
on a context switch like PRISC. An important distinction
to note is that an ID tuple is not the absolute name of a
custom instruction, but rather a custom instruction can have
many ID tuples associated with it to facilitate sharing cus-
tom instructions. This complicates the mapping hardware;
it is no longer sufficient to just associate an ID tuple with a
PFU. Instead we use a Translation Lookaside Buffer (TLB)
arrangement, as shown in Figure 1. A TLB consists of a
Content Addressable Memory (CAM) used to store ID tu-
ples which is used as an index into a RAM containing either
the PFU number in which the circuit resides for circuit dis-
patch, or the software address for software dispatch. This
arrangement allows for the mapping of multiple ID tuples
to a single circuit or software routine. This has one draw-
back: more mappings may be needed that can fit in the TLB,
so a custom instruction that is loaded in hardware may fault
if its mapping has been pushed out the TLB. When the op-
erating system sees a custom instruction fault it must first
check if it is just a mapping fault before attempting to load
the hardware.

4.3 Software Dispatch

Dispatching to a software alternative for custom hard-
ware requires the destination function to be able to decode
the original instruction to work out which operands it has to
use. This can be a time consuming operation, so we provide
hardware support to speed this up.

The solution we have chosen is to make the FPL unit
remember the operands in special purpose registers, big
enough to hold the two source operands and the result
operand. These registers are filled during a special branch
instruction used to move execution to the software alterna-
tive. Special load/store instructions can then be used that
work with the special purpose registers to provide the data
access needed without the routine even needing to see the
original operands explicitly. Additional instructions also
exist to allow the operating system to read and write the
registers directly, allowing them to be preserved over a pro-
cess switch. One subtle problem with this mechanism is that
if the software alternative uses a custom instruction which

also dispatches to software then the contents of the special
purpose registers will be lost, potentially before they were
finished with. However, we consider this bad practice: us-
ing a custom instruction whilst trying to reduce contention
on the PFUs does not make sense; execution only reached
the software alternative since there was not room for custom
instructions in hardware.

4.4 Long Instruction Handling

In the Proteus Architecture custom hardware instructions
may run for multiple cycles. Long running instructions have
important consequences on a processor though, in that they
either must have an upper bound on the number of cycles
they can take to ensure they do not lock up the processor or
increase interrupt latency, or the instructions must be inter-
ruptible. The simplest solution is to simply limit the number
of cycles a custom instruction can take, but we would prefer
for instructions not to be constrained in that fashion, so have
opted to make the system interruptible. During execution of
an instruction it can be interrupted by processor exceptions
and then restarted from the point at which it was interrupted
transparently without the application being aware that this
occurred.

The interface to PFUs is designed with two additional
control signals: an init signal going in and a completion sig-
nal coming out. When a custom instruction is first invoked
the init signal goes high for a cycle, indicating to the custom
hardware that this is the first cycle of an invocation, allow-
ing it to set itself up accordingly. The circuit is then clocked
until the completion goes high, which tells the processor to
stop clocking the PFU and to store the value produced by
the PFU appropriately. When an instruction is interrupted,
we can continue execution simply by reissuing the invoca-
tion instruction and not setting the init signal to high. We
do this by using a 1 bit status register to feed back the com-
pletion signal into the init signal. On reset all the status
registers are set to 1, so when an instruction is started the
circuit will see the init signal high. For subsequent cycles
the done signal will flow through the register and set the init
signal low. If the instruction is then interrupted and reissued
the init signal will be low on reissue, so execution will con-
tinue as if nothing had happened. On completion the done
signal will go high, placing a 1 in the status register again
ready for the next invocation.

4.5 Usage Statistics

To aid the operating system in deciding which circuits it
is best to swap off the array during periods of contention,
the set of PFUs each have associated with them a register
containing a count of the times that instruction has com-
pleted. These registers can be read and cleared by the op-
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erating system. It can then use these registers to implement
classic scheduling algorithms such as Least Recently Used
(LRU), Second Chance, etc. [9]. Note that we take the count
at the end of the instruction rather than at the start to allow
for instructions to be interrupted and reissued.

5 Demonstration

The ProteanARM is a demonstration of the Proteus Ar-
chitecture. It originally appeared in [2] without manage-
ment support, to demonstrate that the basic datapath was
sufficient to provide applications with a performance in-
crease. We extended the simulator model to include the
modifications outlined in Section 4.

The ProteanARM is based on an ARM7TDMI proces-
sor, and adds the reconfigurable execution unit to the data-
path as an on-chip coprocessor, the standard way of adding
additional function units to the ARM. The coprocessor con-
sists of a 16 element 32 bit wide register file connected to
a set of PFUs and the dispatch hardware described above.
For experimental purposes we limited the processor to four
PFUs of 500 Configuration Logic Blocks (CLBs) (we esti-
mate that the chip could support twice that number of PFUs,
but limit it in order to demonstrate the system behaviour
under contention). The only change we had to make to
the ARM core was to change the coprocessor interface and
control logic to allow the coprocessor to generate a mem-
ory address for the software dispatch mechanism, which is
not possible under the normal interface. Otherwise all the
changes are limited to the coprocessor unit.

POrSCHE (Proteus Operating System and Configurable
Hardware Environment) is a simple operating system ker-
nel developed from scratch to demonstrate the ProteanARM
platform is practicable. It uses a simple pre–emptive round
robin process scheduler to run multiple processes. The basic
POrSCHE kernel without PFU support runs successfully on
actual ARM hardware. POrSCHE implements a Custom In-
struction Scheduler (CIS) as part of the kernel, which man-
ages the circuits registered with the OS by different appli-
cations. The CIS is responsible for loading and unloading
circuits and for managing the dispatch hardware.

5.1 Experiments

To demonstrate the platform working we ran two initial
scheduling experiments, testing both basic scheduling and
using software dispatch as an alternative to circuit swap-
ping. For each experiment we ran three sets of runs with
between 1 and 8 instances of a particular test application:
alpha blending image processing, twofish encryption, and
audio echo processing. Two of the test applications (al-
pha blending and twofish encryption) use a single custom
instruction so should cause contention after four processes
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Figure 2. Results for basic scheduling test.

are run concurrently, and the other uses two custom instruc-
tions in a tight loop, so contention should occur after just
two concurrent instances. Each test uses two scheduling
quanta sizes to attempt to show the difference between batch
scheduling and interactive scheduling. A scheduling quanta
of 10ms was used to demonstrate batch scheduling based on
the Linux batch scheduling quanta. A shorter quanta of 1ms
was used to indicate performance on a more interactive sys-
tem where applications are not getting their full quanta. In
the final system applications using the same circuits would
attempt to share instances, just changing the state in a single
PFU; however we are interested in the effect of overloading
here, so sharing is not allowed.

5.1.1 Circuit Switching Test

In this test we ran each complete set with a round robin
and random circuit replacement policy. These results can
be seen in Figure 2. In all cases the increase in completion
time is linear with the number of concurrent processes un-
til PFU contention occurs. This occurs after four processes
for the test applications with a single circuit and after two
processes for the test application with two circuits. At this
point context switch overheads reduce the overall perfor-
mance. At a 10ms quantum value the extra overhead has
only a small effect of completion times, however at the 1ms
quantum value the increased number of switches causes a
more significant performance reduction. The round robin
policy generally performs worse than the random policy in
most cases. This is due to bad interaction with the round
robin process scheduler, which typically means applications
lose their circuits after a context switch. Note that all runs
performed an order of magnitude faster than the unacceler-
ated applications.
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5.1.2 Software Dispatch Test

These results for the alpha blending and audio encryption
tests can be seen in Figure 3 (the twofish example follows a
similar trend to the alpha blending results and is not shown).
The graph shows the same points of contention as before,
but the subsequent performance of the software dispatch im-
plementation differs significantly. The change in scheduling
quanta has little impact on performance of the software runs
due to the lack of circuit switches. The performance of soft-
ware dispatch runs lies between the 10ms and 1ms runs with
circuit switching. This indicates that the software dispatch
routine is only useful when an application suffers many cir-
cuit switches.

5.1.3 Discussion

The above experiments demonstrate that we can success-
fully manage the FPL resource on the processor using the
management facilities we have provided, without losing the
performance benefit of having the additional resource. The
cost of moving circuits on and off the array proved suffi-
ciently small that software dispatch had no advantage for
the runs using 10ms scheduling period. In other operat-
ing systems, such as Windows NT and BSD variants which
use a batch scheduler period of 100ms, the benefits would
be even better. The software dispatch mechanism proved
useful only during periods when applications just get short
quanta, such as might be found in an interactive system.
However, this ignores the added delay during configuration
that a virtual memory system would add (circuit may need
to be paged in from disk), and as such software dispatch
may yet prove an interesting option.

6 Conclusion

With this work we have demonstrated a reconfigurable
processor architecture that is suitable for use in a worksta-
tion environment, where the operating system manages the
FPL resource and the management does not negate the ben-
efits of having the FPL.

Having done the basic work we are now going on to con-
sider the higher level issues about how a programmer uti-
lizes such a system from a programming language perspec-
tive and to test the performance of the system with more
dynamic scheduling loads.
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