The Proteus Processor — A Conventional CPU with
Reconfigurable Functionality

Michael Dales

Department of Computing Science, University of Glasgow,
17 Lilybank Gardens, Glasgow, G12 8RZ, Scotland.
michael@dcs.gla.ac.uk

Abstract The first is to add more memory onto the CPU, e.g.
bigger caches. The second is to add more Func-
This paper describes the starting position for réional Units (FUs) to the processor, such as the new
search beginning at the Department of ComputingMX instructions added by Intel to its Pentium pro-
Science, University of Glasgow. The research wilessors (Intel Corporation 1998) and the 3D accel-
investigate a novel microprocessor design incorperation built into the new Cyrix MediaGX proces-
rating reconfigurable logic in its ALU, allowing thesors (Cyrix Corporation 1999). These designs add
processor’s function units to be customised to s@pecialised instructions to the CPU in order to accel-
the currently running application. We argue that thisrate certain types of application (typically graphics
architecture will provide a performance gain for ased).
wide range of applications without additional pro-
grammer effort. The paper gives some background
:cpformat[oq into similar research, argues the bene'With more specialised function units being added
its of this idea compared to current research, aﬂgj

lists some of the questions that need to be answer GCPUS we begin to see a lower utilisation of the
q silicon. The new 3D graphics FUs added are fine

F°.’T‘a"e this idea a reality. We end by specifying tq‘%r CAD programs or games, but are not required

initial work plan for the project. for databases or word processing. Another prob-
lem is that the functionality in these FUs must ei-

1 Motivation ther pe generalised versions of a pr?blem, in which
case it may not solve a programmer’s specific prob-

There has been a lot of research into combining niM (Abrash 1996), or tackle a specific pro*?'em and
croprocessor technology with Field Programmabﬂfcome c;(gt of date (?'g' MMXhadde gr'aphlcs fgnclz-
Logic (FPL) (typically using a Field Programmablé'onS working at a colour depth of 8 bits per pixe

Gate Array (FPGA)). Whilst these solutions cIainprp)' but most programs now are looking at greater

some performance over a conventional hard—co?:%lour depths, such as 16 and 24 bpp).

CPU, they typically make significant alteration to
the CPU, or make the reconfigurable logic detached,
available over a bus. In both cases, significant workIn this paper we present a novel architecture that
is required by the programmer to make general pwre argue will provide a performance increase for a
pose applications take advantage of the hardwarewide range of applications without significant over-
Another recent trend is the appearance of speead for the programmer. Instead of using the extra
cialised function units in some microprocessoravailable gates to add new problem specific func-
As silicon technology is progressing to smaller digons to the ALU of a conventional microprocessor,
sizes, Integrated Circuit (IC) designers have mocair architecture places reconfigurable logic inside
and more gates at their disposal. In CPU desigise ALU, from where its functionality can be ac-
they have more gates on their die than they needamssed in the same way as any other ALU instruc-
build just a CPU, so the designers are looking foion. Thus, we have a single processing device that
extra ways to utilise these gates. Typically designtilises the flexibility of reconfigurable logic with a
ers use two methods to utilise this extra resouragaodern high speed hard—coded CPU design.

2 Current Work 2.2 Building a CPU on an FPGA

There are several attempts being made to utilise thee second method involves replacing the conven-
advantages of FPL in the field of microprocessor déonal processor with an FPGA and applying some

sign. Three main approaches are being undertakdffm of CPU framework on top (Wirthlin et al. 1994,
Wirthlin & Hutchings 1995, Donlin 1998). Differ-

1. Coupling an FPGA to a conventional CPU oveent groups have tackled this idea in different ways,

a bus but they share a common principle. In such a sce-
o nario, only the actual parts of the CPU required for
2. Building a CPU on an FPGA a given application are instantiated; this allows mid-

dling complex circuits to be instantiated on the CPU.
ecause the routing of the CPU can be reconfig-
ured, these designs typically make use of an opti-

Here we look at each category in turn, followedised data—path for their circuit layout. This solu-
by a discussion of these efforts as a whole. tion has to hgve Iow—'IeveI support as it is fundamen-
tal to the device. Typically, these processors use new

. programming models — they work in a fundamen-
2.1 Coupling a CPU and an FPGA tally different way from current CPU designs.

In this category, a conventional microprocessor is

connected to an FPGA over a bus. Efforts in thi . . .
area can be split into those which couple the tw%3 Static Framework with a Reconfig-
urable Core

parts loosely and those that use tight coupling.

In loosely cogpled fde.ls.'gns' adn FPGhA ('js place.f;he third category describes systems that have taken
on a separate piece of silicon and attached acros icroprocessor shell and placed FPL inside this to

external bus (e.g. PCI bus), just as a 3D acceleg}row its functionality to be tailored during execu-

tion card might be today (Singh et al. 1997). Typ['on. Two examples of this approach can be seen in

|cally such a device will have a certain amount gy, e nstein et al. 1991) and (Sawitzki et al. 1998).

dedicated memory attached to it (like with a vide he former is based on a data—procedural architec-

card) to reduce the number of individual bus tran%
id

3. Building a static framework around a reconfi
urable core

L 1re, called an Xputer. This design utilises an area of
fers. C;Lcwtt)s are loaded é)ntodthe FPS’S’ dI?taAf L in which it can place multiple FUs. The second
f_ﬁggis. € bus, processe a:cn 'I_pass'e ach. Sis'¥oser to a conventional microprocessor, placing a

. IS on its own piece ot stiicon 't. can nNave yacy of reconfigurable logic inside its equivalent of
.h'gh CE.:" count, gllowmg for complex circuits to b‘%he ALU, allowing the contents of the FPL to be ac-
instantiated on it. Typically, no low-level SUPPOTLassed as if it were a conventional instruction. Both

|s.p.rOV|ded for the programmer — they have to &%t these processor designs provide low—level sup-
plicitly load a circuit onto the FPGA and transferhort for the reconfigurable functionality
any data between it and the CPU. Some run—time '

system support methodologies for such devices have
been investigated (Burns et al. 1997), but have failed4 Discussion
to gain widespread acceptance.

The second method moves the FPGA onto th¥e can contrast the three approaches in terms of
same die as the processor (Hauser & Wawrzynegupling latency andsynchronisation There is a
1997, Triscend Corporation 1999). This reduces tkighter coupling of the two technologies (CPU and
space available for the FPGA, as it has to share thBL) as we move down the list in Section 2. The
available gate space with the CPU. However, thiigst technique suffers from latency problems (more
means that data transfers between the CPU and dematically in the loosely coupled devices) as the
FPGA are quicker as the bus between the two padigta being processed has to move outside the normal
is much shorter and can be clocked at a higher rafg?U data—paths. This technique also suffers from
Note, however, that the FPGA is usually connect&ynchronisation problems: how is the processing in
via a separate bus from the main internal data—pattis FPGA interleaved with the normal processing of
With the closer coupling comes lower—level suppotiie CPU? This becomes more apparentif being used
for accessing the FPGA. The CPU can have instrit-a multiprogramming environment.
tions built in for interacting with the FPGA, such as The FPGA based CPU solution avoids both of
“load design” and “run circuit fok clock ticks”. these problems, but is not without drawbacks. By

moving everything onto the FPGA, we can recomauch better utilisation of the silicon. When func-
figure everything, however this is not typically retions are no longer needed they can be removed to
quired. Consider operations such as 2s comptaake way for new circuits. This turns the ALU
ment arithmetic, boolean logic, and effective adato a Reconfigurable ALU (RALUY) An applica-
dress calculation, along with techniques such #ien could use multiple RFUs at once, loading in the
pipelining and branch prediction. These standasét of circuits it needs. The circuits loaded into the
components are always used and do not need toR&LU could change over time. If an application
reconfigurable. Thus by placing these componemseds to load another circuit but there are no free
on an FPGA they will suffer a performance 16ssRFUs then the contents of one could be swapped
and fail to utilise the flexible nature of the platformout (cf paging in a virtual memory system). This
By adding a level of indirection (the reconfigurableesults in a CPU that can be customised to suit the
logic) between thentire CPU and the silicon, it is application currently in use, be it database, spread-
likely that the general performance of such a CPsheet, word processor or game, allowing each one
will not match a generic hard—coded CPU. to take advantage of custom FUs. These FUs can

The final method described has the tightest ibe tailored to the exact needs of a given problem,
tegration of the two technologies, and avoids thatching the programmer’s requirements.
problems of moving everything onto FPL mentioned By placing this logic inside the ALU it will have
above. This suggests that this is the way to go -access to the processor’s internal data—paths, re-
provide reconfigurable functionality inside the heannoving the latency problem described above. At a
of the microprocessor. higher—level, it will appear as if the CPU has a dy-

If we consider all of the approaches describg@mic instruction set, one that meets the needs of
above from the point of view of the programmer weach program. The RFUs have the same interface
see another problem. Although the tighter couplirgs any other FU in the CPU. This approach allows
gives programmers greater low—level support, mdse CPU to behave normally in terms of pipelining
of the designs use a non-standaplogramming and caching— the new instructions are just like nor-
model. This is a drawback, as it inhibits the widemal ALU instructions in that respect. Programs can
spread acceptance of such a technology — very lite written using a normal programming model. The
tle existing software can easily be ported to the ngatograms simply need to load their FU designs into
platform. The importance of supporting legacy syshe RALU before they are required and from then
tems can be seen clearly in the Intel x86 famil@n invoking a custom function can be made syntac-
which still supports programs written back in thécally the same as issuing any other instruction to
early 80's. a traditional ALU: all it requires is an opcode and a

list of standard operands.
This technique is different from altering the mi-

3 The Proteus Architecture crocode in the processor’s control unit. Some mod-
ern processors, such as Intel’s Pentium Pro and Pen-
3.1 Overview tium Il processors, allow the microcode inside the

processor to be updated (E.E. Times 1997). Chang-
The idea behind our Protelprocessor is to placeing microcode allows machine instructions to carry
a smaller amount of reconfigurable logic inside thsut a different sequence of operations, but only op-
ALU of a conventional microprocessor (i.e. onerations which already exist on the processor. It
which uses the Von Neumann model), where dfoes not allow any new low-level functionality to be
would be tightly integrated into the existing archiadded. Our proposal does allow for new low-level
tecture. In this model, along with the normal AL tonstructs to be added to the processor.
functions, such as add and subtract, we propose
to deploy a bank of Reconfigurable Function Uni .
(RFUs) whose functionality can be determined ?t'z The Reconfigurable ALU
run—time, with applications specifying the function$he external interface of the RALU is similar to a
that they require. Functions can be loaded into tih@rmal ALU. An ALU contains a set of operations
RFUs as and when they are needed, suggestingfavhich any one can be chosen per instruction. The
RALU is similar, containing a set of RFUs, any of

1FPGAs are slower than Application Specific ICs (ASICs).

2By standard | mean Von Neumann. 4Note that this is different from therALU described
3Proteus - A sea-god, the son of Oceanus and Tethys, fableqHartenstein et al. 1991) — see Section 3.2 for a more detailed
to assume various shapes. O.E.D. Second Edition. description of our RALU.

bits cntr the two parts are combined, but there could be good
i i reasons for not doing so. For example, many micro-
a a processors use a super—scalar architecture, keeping
ALU | x RALU | x the simple operations that take a single clock cycle
b b in the ALU and moving other operations that take
7 1 longer (e.g. multiply) into external FUs which can
T T be executed in parallel. We may not wish to limit
the content of the RFUs to operations that need a
single clock cycle, so a super—scalar approach may
Figure 1: A traditional ALU and a Reconfigurabl®® More appropriate. o
ALU A very important question is how much FPL
should each RFU contain? This determines how
complex a circuit (and thus how much functional-
which can be used in an individual instruction. Thigy) can be encoded in each one. A similar issue is
difference is that in the RALU the actual operationsow many RFUs should be there. Too few RFUs and
contained within each RFU can change (indepeapplications may be constantly swapping circuits in
dently) over time to suit the currently executing agand out, wasting time (cf thrashing in virtual mem-
plication(s). ory). Too many RFUs could lead to problems phys-
Figure 1 shows the interfaces the ALU and thieally routing the device. A great deal of extra rout-
RALU present to the rest of the CPU. The convelng is likely to be required to get the bit—streams de-
tional ALU takes in two operands andb, and re- scribing the circuits into the RFUs, which may prove
turns a resulk. The function the ALU carries outdifficult inside an already dense CPU.
on the operands is determined by the control linesAt a slightly higher level, we need to consider the
op. The RALU presents the same interface to theecessary changes required to the control algorithm
CPU for conventional operation . It also has twfpr a CPU to support the new functionality. New
additional inputs: lines which take in a circuit bitinstructions will be required so that the Run Time
stream to configure the individual RFUKIt) and Environment (RTE) for a program can set up the cir-
additional control lines needed during reconfiguraguits it needs, and new instructions for invoking the
tion (cntr). Thus, apart from when being configuredunctions will be needed. Another interesting ques-
the RALU can be used in the same way as a tradien is whether there should be caches for RFU cir-
tional ALU. cuits, similar to the caches for instructions and data
Inside each RFU is an area of FPL. This logic camhich are already found inside CPUs?
take inputs from the operandsandb and, when If we are to allow the Operating System (OS) to
selected by thep lines, place a result or. The virtualise the RALU resource (see Section 4.2 for
FPL inside each RFU is independent of that in otheftore discussion on this), then the application can
RFUs, thus reprogramming one will not affect thaot make assumptions as to where a specific circuit
others. The amount and type of the FPL inside avill reside in the RALU (cf to virtual/physical ad-
RFU is an area of research (see Section 4.1). dress translation in a virtual memory system). A
layer of indirection between an instruction the ap-
. plication issues and the RFU called will be required.
4 Areas of Possible Research The translation operation will need to be very fast
— even a tiny overhead can add up to a large one if
Changing the processor at a fundamentally low levgh application relies heavily on the RALU.
has repercussions throughout the system, touchingzfter simulating and prototyping a design for
many fields in computing science. such a CPU the results need to be analysed to assess
its performance. This needs to be done against both
a conventional hard—coded CPU and the integrated
CPU and FPL efforts described previously.
Firstly, there are the low—level aspects to consider.
At the design stage we need to look at the relatiop- ;
ship between the RALU and the rest of the CPL?'.'2 Operating System Issues
It may be that the traditional ALU and RALU canOn the software level, we have the question of re-
be put together into a single unit, or should be kepburce management of the RFUs. Just as an OS
separate. Obviously the CPU layout will be easieriii a multiprogramming environment must manage

op op

4.1 Hardware Design

resources such as memory and CPU time in a d¢kat are often called and can be synthesised auto-

cure and efficient manner, there needs to be botimatically into RFU designs. This approach is more

mechanism and policy for management of the RFUexible, releasing software engineers from a fixed

Potentially the RFUs can be split amongst multipkset of circuits. This raises the important question

programs, virtualising the resource. If this is donef what functionality can we extract from programs

then we need to consider how many RFUs shoul place into circuits? A simple way is to look for

be dedicated to a single program, and what sort afiything which takes two inputs and one output as a

replacement policy should be used. This could pdsaditional FU does, but more complex algorithms,

sibly also have an adverse effect on context switelspecially those based on iteration, may not be so

times it we need to swap FUs in and out along witkasy to find. For example, a CRC function works

everything else. much better in hardware, but would be very hard to
Another issue concerns maintaining the pretenioeate in software and harder again to synthesise an

of a Virtual Machine (VM) to application programsoptimal solution. Another issue is proving that the

The program'’s functionality, when encoded as a cisynthesised circuit is functionally equivalent to the

cuit in a RFU has access to the underlying hardeftware instructions it replaces.

ware, by-passing all the OS security checks. This

means that malicious or badly written programs can

pose security threats to other programs, or possibly

hog resources (e.g. a circuit in an infinite loopd Current Position

This poses the same questions that have been ad-

dressed in research into extendible OSs (Sma”ﬁbsearch on this project will begin in October 1999.

Seltzer 1996). In the initial phase we will address the low—level de-
sign issues of a microprocessor with a RALU. The
4.3 Programmer Support viability of such a platform will be examined, inves-

. . tigating such issues as size and number of RFUs,
For the new CPU design to be accessible, there the type of logic that should go inside them.

high-level programming issues to be considered 9P this stage is successful then we plan to take an
If these issues are not tackled, then it is unlikely th@%isting conventional CPU design and modify it to
the technology will be widely accepted, despite tnﬁclude a RALU. This will be simulated, and possi-

anticipated performance increase. bl
; o rototyped onto a FPGA, to prove the concept
One obvious question is whether software d 'ZrEs P P P

signed to utilise this new architecture will show an his fund | low—level K hen b
improvement compared to that written for a hard— ' NS fundamenta _OW; evfe \;lvor Ca; t ﬁ.n oe
coded CPU (although at this stage it is assumed tigEd @s @ starting point for further work. This in-

there will be some improvement). Applications wilf'udes full analysis of the performance of the pro-

incur new overheads in terms of managing their ciposed architecture compared with both conventional

cuits, which might detract from the performance incroprocessors and the approaches taken by others

the system. Questions such as how many instr§@S described in Section 2), along with research into
tions need to be optimised into a single new FU {6€ toPiCs discussed in Section 4.
be efficient need to be examined and answered.
It is unreasonable to assume that most software
engineers want to design circuits to go with thej .
program, and software companies will not like thb Conclusion
added expense of hiring hardware engineers. Thus,
the hurdle of generating circuits needs to be réa this paper we have presented a novel architec-
moved, or at least made considerably smaller. Onge for combining traditional CPU design with re-
way to do this is to have pre—built libraries of circonfigurable logic based on the idea of a Reconfig-
cuits, which the programmer can invoke througlrable ALU, as well as highlighting many research
stubs compiled into their program. To the progranareas that need to be investigated before such a de-
mer it will look like a normal function call that is sign becomes practical. We argue that this new ar-
eventually mapped onto hardware. chitecture, along with proper support in the OS and
This technique could be improved, however, bgrogramming tools, will provide a noticeable perfor-
having a post—compilation stage which analyses theance gain for a wide range of applications without
output of the compiler for sections of the prograra significant overhead for the programmer.

References Wirthlin, M. J. & Hutchings, B. L. (1995), A

Abrash, M. (1996), ‘Ramblings In Real TimeDr.
Dobbs Source Book

Dynamic Instruction Set Computdn ‘IEEE

Workshop on FPGAs for Custom Computing

Machines’.

Burns, J., Donlin, A., Hogg, J., Singh, S. & de Witwjirthlin, M. J., Hutchins, B. L. & Gilson, K. L.

M. (1997), A Dynamic Reconfiguration Run-
Time Systemjn ‘IEEE Workshop on FPGAs
for Custom Computing Machines’.

Cyrix Corporation (1999), ‘Cyrix MediaGX Pro-
cessor Frequently Asked Questions’.
URL: http://www.cyrix.com/html/products/-
mediagx/gx¥ag.htm

Donlin, A. (1998), Self Modifying Circuitry —
A Platform for Tractable Virtual Circuitry,
in ‘8th International Workshop on Field Pro-
grammable Logic and Applications’.

E.E. Times (1997), ‘Intel preps plan to bust bugs in
Pentium MPUs’. 30th June.

Hartenstein, R. W., Schmidt, K., Reinig, H. & We-
ber, M. (1991), A Novel Compilation Tech-
nigue for a Machine Paradigm Based on Field-
Programmable Logidn ‘International Work-
shop on Field Programmable Logic and Appli-
cations'.

Hauser, J. R. & Wawrzynek, J. (1997), Garp: A
MIPS Processor with a Reconfigurable Copro-
cessorin ‘IEEE Workshop on FPGAs for Cus-
tom Computing Machines’.

Intel Corporation (1998)Intel Architecture Soft-
ware Developer's Manual, Volume 1: Basic
Architecture Intel Corporation.

Sawitzki, S., Gratz, A. & Spallek, R. G. (1998),
CoMPARE: A Simple Reconfigurable Proces-
sor Architecture Exploiting Instruction Level
Parallelism,in ‘Proceedings of the 5th Aus-
tralasian Conference on Parallel and Real-
Time Systems’.

Singh, S., Paterson, J., Burns, J. & Dales, M.
(1997), PostScript rendering in Virtual Hard-
ware,in ‘7th International Workshop on Field
Programmable Logic and Applications’.

Small, C. & Seltzer, M. (1996), A Comparison of
OS Extension Technologief) ‘Proceedings
of the USENIX 1996 annual technical confer-
ence’.

Triscend Corporation (1999), ‘Triscend corporation
web page’.
URL: http://www.triscend.com/about

(1994), The Nano Processor: a Low Resource
Reconfigurable Processar, |IEEE Workshop
on FPGAs for Custom Computing Machines’.

