
The Proteus Processor — A Conventional CPU with
Reconfigurable Functionality

Michael Dales

Department of Computing Science, University of Glasgow,
17 Lilybank Gardens, Glasgow, G12 8RZ, Scotland.

michael@dcs.gla.ac.uk

Abstract

This paper describes the starting position for re-
search beginning at the Department of Computing
Science, University of Glasgow. The research will
investigate a novel microprocessor design incorpo-
rating reconfigurable logic in its ALU, allowing the
processor’s function units to be customised to suit
the currently running application. We argue that this
architecture will provide a performance gain for a
wide range of applications without additional pro-
grammer effort. The paper gives some background
information into similar research, argues the bene-
fits of this idea compared to current research, and
lists some of the questions that need to be answered
to make this idea a reality. We end by specifying the
initial work plan for the project.

1 Motivation

There has been a lot of research into combining mi-
croprocessor technology with Field Programmable
Logic (FPL) (typically using a Field Programmable
Gate Array (FPGA)). Whilst these solutions claim
some performance over a conventional hard–code
CPU, they typically make significant alteration to
the CPU, or make the reconfigurable logic detached,
available over a bus. In both cases, significant work
is required by the programmer to make general pur-
pose applications take advantage of the hardware.

Another recent trend is the appearance of spe-
cialised function units in some microprocessors.
As silicon technology is progressing to smaller die
sizes, Integrated Circuit (IC) designers have more
and more gates at their disposal. In CPU designs,
they have more gates on their die than they need to
build just a CPU, so the designers are looking for
extra ways to utilise these gates. Typically design-
ers use two methods to utilise this extra resource.

The first is to add more memory onto the CPU, e.g.
bigger caches. The second is to add more Func-
tional Units (FUs) to the processor, such as the new
MMX instructions added by Intel to its Pentium pro-
cessors (Intel Corporation 1998) and the 3D accel-
eration built into the new Cyrix MediaGX proces-
sors (Cyrix Corporation 1999). These designs add
specialised instructions to the CPU in order to accel-
erate certain types of application (typically graphics
based).

With more specialised function units being added
to CPUs we begin to see a lower utilisation of the
silicon. The new 3D graphics FUs added are fine
for CAD programs or games, but are not required
for databases or word processing. Another prob-
lem is that the functionality in these FUs must ei-
ther be generalised versions of a problem, in which
case it may not solve a programmer’s specific prob-
lem (Abrash 1996), or tackle a specific problem and
become out of date (e.g. MMX adds graphics func-
tions working at a colour depth of 8 bits per pixel
(bpp), but most programs now are looking at greater
colour depths, such as 16 and 24 bpp).

In this paper we present a novel architecture that
we argue will provide a performance increase for a
wide range of applications without significant over-
head for the programmer. Instead of using the extra
available gates to add new problem specific func-
tions to the ALU of a conventional microprocessor,
our architecture places reconfigurable logic inside
the ALU, from where its functionality can be ac-
cessed in the same way as any other ALU instruc-
tion. Thus, we have a single processing device that
utilises the flexibility of reconfigurable logic with a
modern high speed hard–coded CPU design.

1



2 Current Work

There are several attempts being made to utilise the
advantages of FPL in the field of microprocessor de-
sign. Three main approaches are being undertaken:

1. Coupling an FPGA to a conventional CPU over
a bus

2. Building a CPU on an FPGA

3. Building a static framework around a reconfig-
urable core

Here we look at each category in turn, followed
by a discussion of these efforts as a whole.

2.1 Coupling a CPU and an FPGA

In this category, a conventional microprocessor is
connected to an FPGA over a bus. Efforts in this
area can be split into those which couple the two
parts loosely and those that use tight coupling.

In loosely coupled designs, an FPGA is placed
on a separate piece of silicon and attached across an
external bus (e.g. PCI bus), just as a 3D accelera-
tion card might be today (Singh et al. 1997). Typ-
ically such a device will have a certain amount of
dedicated memory attached to it (like with a video
card) to reduce the number of individual bus trans-
fers. Circuits are loaded onto the FPGA, data fed
across the bus, processed and passed back. As the
FPGA is on its own piece of silicon it can have a
high cell count, allowing for complex circuits to be
instantiated on it. Typically, no low–level support
is provided for the programmer — they have to ex-
plicitly load a circuit onto the FPGA and transfer
any data between it and the CPU. Some run–time
system support methodologies for such devices have
been investigated (Burns et al. 1997), but have failed
to gain widespread acceptance.

The second method moves the FPGA onto the
same die as the processor (Hauser & Wawrzynek
1997, Triscend Corporation 1999). This reduces the
space available for the FPGA, as it has to share the
available gate space with the CPU. However, this
means that data transfers between the CPU and the
FPGA are quicker as the bus between the two parts
is much shorter and can be clocked at a higher rate.
Note, however, that the FPGA is usually connected
via a separate bus from the main internal data–paths.
With the closer coupling comes lower–level support
for accessing the FPGA. The CPU can have instruc-
tions built in for interacting with the FPGA, such as
“load design” and “run circuit forx clock ticks”.

2.2 Building a CPU on an FPGA

The second method involves replacing the conven-
tional processor with an FPGA and applying some
form of CPU framework on top (Wirthlin et al. 1994,
Wirthlin & Hutchings 1995, Donlin 1998). Differ-
ent groups have tackled this idea in different ways,
but they share a common principle. In such a sce-
nario, only the actual parts of the CPU required for
a given application are instantiated; this allows mid-
dling complex circuits to be instantiated on the CPU.
Because the routing of the CPU can be reconfig-
ured, these designs typically make use of an opti-
mised data–path for their circuit layout. This solu-
tion has to have low–level support as it is fundamen-
tal to the device. Typically, these processors use new
programming models — they work in a fundamen-
tally different way from current CPU designs.

2.3 Static Framework with a Reconfig-
urable Core

The third category describes systems that have taken
a microprocessor shell and placed FPL inside this to
allow its functionality to be tailored during execu-
tion. Two examples of this approach can be seen in
(Hartenstein et al. 1991) and (Sawitzki et al. 1998).
The former is based on a data–procedural architec-
ture, called an Xputer. This design utilises an area of
FPL in which it can place multiple FUs. The second
is closer to a conventional microprocessor, placing a
block of reconfigurable logic inside its equivalent of
the ALU, allowing the contents of the FPL to be ac-
cessed as if it were a conventional instruction. Both
of these processor designs provide low–level sup-
port for the reconfigurable functionality.

2.4 Discussion

We can contrast the three approaches in terms of
coupling, latency, andsynchronisation. There is a
tighter coupling of the two technologies (CPU and
FPL) as we move down the list in Section 2. The
first technique suffers from latency problems (more
dramatically in the loosely coupled devices) as the
data being processed has to move outside the normal
CPU data–paths. This technique also suffers from
synchronisation problems: how is the processing in
the FPGA interleaved with the normal processing of
the CPU? This becomes more apparent if being used
in a multiprogramming environment.

The FPGA based CPU solution avoids both of
these problems, but is not without drawbacks. By

2



moving everything onto the FPGA, we can recon-
figure everything, however this is not typically re-
quired. Consider operations such as 2s comple-
ment arithmetic, boolean logic, and effective ad-
dress calculation, along with techniques such as
pipelining and branch prediction. These standard
components are always used and do not need to be
reconfigurable. Thus by placing these components
on an FPGA they will suffer a performance loss1

and fail to utilise the flexible nature of the platform.
By adding a level of indirection (the reconfigurable
logic) between theentireCPU and the silicon, it is
likely that the general performance of such a CPU
will not match a generic hard–coded CPU.

The final method described has the tightest in-
tegration of the two technologies, and avoids the
problems of moving everything onto FPL mentioned
above. This suggests that this is the way to go —
provide reconfigurable functionality inside the heart
of the microprocessor.

If we consider all of the approaches described
above from the point of view of the programmer we
see another problem. Although the tighter coupling
gives programmers greater low–level support, most
of the designs use a non–standard2 programming
model. This is a drawback, as it inhibits the wide–
spread acceptance of such a technology — very lit-
tle existing software can easily be ported to the new
platform. The importance of supporting legacy sys-
tems can be seen clearly in the Intel x86 family,
which still supports programs written back in the
early 80’s.

3 The Proteus Architecture

3.1 Overview

The idea behind our Proteus3 processor is to place
a smaller amount of reconfigurable logic inside the
ALU of a conventional microprocessor (i.e. one
which uses the Von Neumann model), where it
would be tightly integrated into the existing archi-
tecture. In this model, along with the normal ALU
functions, such as add and subtract, we propose
to deploy a bank of Reconfigurable Function Units
(RFUs) whose functionality can be determined at
run–time, with applications specifying the functions
that they require. Functions can be loaded into the
RFUs as and when they are needed, suggesting a

1FPGAs are slower than Application Specific ICs (ASICs).
2By standard I mean Von Neumann.
3Proteus - A sea-god, the son of Oceanus and Tethys, fabled

to assume various shapes. O.E.D. Second Edition.

much better utilisation of the silicon. When func-
tions are no longer needed they can be removed to
make way for new circuits. This turns the ALU
into a Reconfigurable ALU (RALU)4. An applica-
tion could use multiple RFUs at once, loading in the
set of circuits it needs. The circuits loaded into the
RALU could change over time. If an application
needs to load another circuit but there are no free
RFUs then the contents of one could be swapped
out (cf paging in a virtual memory system). This
results in a CPU that can be customised to suit the
application currently in use, be it database, spread-
sheet, word processor or game, allowing each one
to take advantage of custom FUs. These FUs can
be tailored to the exact needs of a given problem,
matching the programmer’s requirements.

By placing this logic inside the ALU it will have
access to the processor’s internal data–paths, re-
moving the latency problem described above. At a
higher–level, it will appear as if the CPU has a dy-
namic instruction set, one that meets the needs of
each program. The RFUs have the same interface
as any other FU in the CPU. This approach allows
the CPU to behave normally in terms of pipelining
and caching — the new instructions are just like nor-
mal ALU instructions in that respect. Programs can
be written using a normal programming model. The
programs simply need to load their FU designs into
the RALU before they are required and from then
on invoking a custom function can be made syntac-
tically the same as issuing any other instruction to
a traditional ALU: all it requires is an opcode and a
list of standard operands.

This technique is different from altering the mi-
crocode in the processor’s control unit. Some mod-
ern processors, such as Intel’s Pentium Pro and Pen-
tium II processors, allow the microcode inside the
processor to be updated (E.E. Times 1997). Chang-
ing microcode allows machine instructions to carry
out a different sequence of operations, but only op-
erations which already exist on the processor. It
does not allow any new low-level functionality to be
added. Our proposal does allow for new low-level
constructs to be added to the processor.

3.2 The Reconfigurable ALU

The external interface of the RALU is similar to a
normal ALU. An ALU contains a set of operations
of which any one can be chosen per instruction. The
RALU is similar, containing a set of RFUs, any of

4Note that this is different from therALU described
in (Hartenstein et al. 1991) — see Section 3.2 for a more detailed
description of our RALU.

3



ALU RALU
a

b

a

b

x x

op op

cntrbits

Figure 1: A traditional ALU and a Reconfigurable
ALU

which can be used in an individual instruction. The
difference is that in the RALU the actual operations
contained within each RFU can change (indepen-
dently) over time to suit the currently executing ap-
plication(s).

Figure 1 shows the interfaces the ALU and the
RALU present to the rest of the CPU. The conven-
tional ALU takes in two operandsa andb, and re-
turns a resultx. The function the ALU carries out
on the operands is determined by the control lines
op. The RALU presents the same interface to the
CPU for conventional operation . It also has two
additional inputs: lines which take in a circuit bit–
stream to configure the individual RFUs (bits) and
additional control lines needed during reconfigura-
tion (cntr). Thus, apart from when being configured,
the RALU can be used in the same way as a tradi-
tional ALU.

Inside each RFU is an area of FPL. This logic can
take inputs from the operandsa and b and, when
selected by theop lines, place a result onx. The
FPL inside each RFU is independent of that in other
RFUs, thus reprogramming one will not affect the
others. The amount and type of the FPL inside an
RFU is an area of research (see Section 4.1).

4 Areas of Possible Research

Changing the processor at a fundamentally low level
has repercussions throughout the system, touching
many fields in computing science.

4.1 Hardware Design

Firstly, there are the low–level aspects to consider.
At the design stage we need to look at the relation-
ship between the RALU and the rest of the CPU.
It may be that the traditional ALU and RALU can
be put together into a single unit, or should be kept
separate. Obviously the CPU layout will be easier if

the two parts are combined, but there could be good
reasons for not doing so. For example, many micro-
processors use a super–scalar architecture, keeping
the simple operations that take a single clock cycle
in the ALU and moving other operations that take
longer (e.g. multiply) into external FUs which can
be executed in parallel. We may not wish to limit
the content of the RFUs to operations that need a
single clock cycle, so a super–scalar approach may
be more appropriate.

A very important question is how much FPL
should each RFU contain? This determines how
complex a circuit (and thus how much functional-
ity) can be encoded in each one. A similar issue is
how many RFUs should be there. Too few RFUs and
applications may be constantly swapping circuits in
and out, wasting time (cf thrashing in virtual mem-
ory). Too many RFUs could lead to problems phys-
ically routing the device. A great deal of extra rout-
ing is likely to be required to get the bit–streams de-
scribing the circuits into the RFUs, which may prove
difficult inside an already dense CPU.

At a slightly higher level, we need to consider the
necessary changes required to the control algorithm
for a CPU to support the new functionality. New
instructions will be required so that the Run Time
Environment (RTE) for a program can set up the cir-
cuits it needs, and new instructions for invoking the
functions will be needed. Another interesting ques-
tion is whether there should be caches for RFU cir-
cuits, similar to the caches for instructions and data
which are already found inside CPUs?

If we are to allow the Operating System (OS) to
virtualise the RALU resource (see Section 4.2 for
more discussion on this), then the application can
not make assumptions as to where a specific circuit
will reside in the RALU (cf to virtual/physical ad-
dress translation in a virtual memory system). A
layer of indirection between an instruction the ap-
plication issues and the RFU called will be required.
The translation operation will need to be very fast
— even a tiny overhead can add up to a large one if
an application relies heavily on the RALU.

After simulating and prototyping a design for
such a CPU the results need to be analysed to assess
its performance. This needs to be done against both
a conventional hard–coded CPU and the integrated
CPU and FPL efforts described previously.

4.2 Operating System Issues

On the software level, we have the question of re-
source management of the RFUs. Just as an OS
in a multiprogramming environment must manage

4



resources such as memory and CPU time in a se-
cure and efficient manner, there needs to be both a
mechanism and policy for management of the RFUs.
Potentially the RFUs can be split amongst multiple
programs, virtualising the resource. If this is done,
then we need to consider how many RFUs should
be dedicated to a single program, and what sort of
replacement policy should be used. This could pos-
sibly also have an adverse effect on context switch
times it we need to swap FUs in and out along with
everything else.

Another issue concerns maintaining the pretence
of a Virtual Machine (VM) to application programs.
The program’s functionality, when encoded as a cir-
cuit in a RFU has access to the underlying hard-
ware, by-passing all the OS security checks. This
means that malicious or badly written programs can
pose security threats to other programs, or possibly
hog resources (e.g. a circuit in an infinite loop).
This poses the same questions that have been ad-
dressed in research into extendible OSs (Small &
Seltzer 1996).

4.3 Programmer Support

For the new CPU design to be accessible, there are
high-level programming issues to be considered too.
If these issues are not tackled, then it is unlikely that
the technology will be widely accepted, despite the
anticipated performance increase.

One obvious question is whether software de-
signed to utilise this new architecture will show an
improvement compared to that written for a hard–
coded CPU (although at this stage it is assumed that
there will be some improvement). Applications will
incur new overheads in terms of managing their cir-
cuits, which might detract from the performance of
the system. Questions such as how many instruc-
tions need to be optimised into a single new FU to
be efficient need to be examined and answered.

It is unreasonable to assume that most software
engineers want to design circuits to go with their
program, and software companies will not like the
added expense of hiring hardware engineers. Thus,
the hurdle of generating circuits needs to be re-
moved, or at least made considerably smaller. One
way to do this is to have pre–built libraries of cir-
cuits, which the programmer can invoke through
stubs compiled into their program. To the program-
mer it will look like a normal function call that is
eventually mapped onto hardware.

This technique could be improved, however, by
having a post–compilation stage which analyses the
output of the compiler for sections of the program

that are often called and can be synthesised auto-
matically into RFU designs. This approach is more
flexible, releasing software engineers from a fixed
set of circuits. This raises the important question
of what functionality can we extract from programs
to place into circuits? A simple way is to look for
anything which takes two inputs and one output as a
traditional FU does, but more complex algorithms,
especially those based on iteration, may not be so
easy to find. For example, a CRC function works
much better in hardware, but would be very hard to
locate in software and harder again to synthesise an
optimal solution. Another issue is proving that the
synthesised circuit is functionally equivalent to the
software instructions it replaces.

5 Current Position

Research on this project will begin in October 1999.
In the initial phase we will address the low–level de-
sign issues of a microprocessor with a RALU. The
viability of such a platform will be examined, inves-
tigating such issues as size and number of RFUs,
and the type of logic that should go inside them.
If this stage is successful then we plan to take an
existing conventional CPU design and modify it to
include a RALU. This will be simulated, and possi-
bly prototyped onto a FPGA, to prove the concept
works.

This fundamental low–level work can then be
used as a starting point for further work. This in-
cludes full analysis of the performance of the pro-
posed architecture compared with both conventional
microprocessors and the approaches taken by others
(as described in Section 2), along with research into
the topics discussed in Section 4.

6 Conclusion

In this paper we have presented a novel architec-
ture for combining traditional CPU design with re-
configurable logic based on the idea of a Reconfig-
urable ALU, as well as highlighting many research
areas that need to be investigated before such a de-
sign becomes practical. We argue that this new ar-
chitecture, along with proper support in the OS and
programming tools, will provide a noticeable perfor-
mance gain for a wide range of applications without
a significant overhead for the programmer.

5



References

Abrash, M. (1996), ‘Ramblings In Real Time’,Dr.
Dobbs Source Book.

Burns, J., Donlin, A., Hogg, J., Singh, S. & de Wit,
M. (1997), A Dynamic Reconfiguration Run-
Time System,in ‘IEEE Workshop on FPGAs
for Custom Computing Machines’.

Cyrix Corporation (1999), ‘Cyrix MediaGX Pro-
cessor Frequently Asked Questions’.
URL: http://www.cyrix.com/html/products/-
mediaqx/gxfaq.htm

Donlin, A. (1998), Self Modifying Circuitry —
A Platform for Tractable Virtual Circuitry,
in ‘8th International Workshop on Field Pro-
grammable Logic and Applications’.

E.E. Times (1997), ‘Intel preps plan to bust bugs in
Pentium MPUs’. 30th June.

Hartenstein, R. W., Schmidt, K., Reinig, H. & We-
ber, M. (1991), A Novel Compilation Tech-
nique for a Machine Paradigm Based on Field-
Programmable Logic,in ‘International Work-
shop on Field Programmable Logic and Appli-
cations’.

Hauser, J. R. & Wawrzynek, J. (1997), Garp: A
MIPS Processor with a Reconfigurable Copro-
cessor,in ‘IEEE Workshop on FPGAs for Cus-
tom Computing Machines’.

Intel Corporation (1998),Intel Architecture Soft-
ware Developer’s Manual, Volume 1: Basic
Architecture, Intel Corporation.

Sawitzki, S., Gratz, A. & Spallek, R. G. (1998),
CoMPARE: A Simple Reconfigurable Proces-
sor Architecture Exploiting Instruction Level
Parallelism,in ‘Proceedings of the 5th Aus-
tralasian Conference on Parallel and Real-
Time Systems’.

Singh, S., Paterson, J., Burns, J. & Dales, M.
(1997), PostScript rendering in Virtual Hard-
ware,in ‘7th International Workshop on Field
Programmable Logic and Applications’.

Small, C. & Seltzer, M. (1996), A Comparison of
OS Extension Technologies,in ‘Proceedings
of the USENIX 1996 annual technical confer-
ence’.

Triscend Corporation (1999), ‘Triscend corporation
web page’.
URL: http://www.triscend.com/about

Wirthlin, M. J. & Hutchings, B. L. (1995), A
Dynamic Instruction Set Computer,in ‘IEEE
Workshop on FPGAs for Custom Computing
Machines’.

Wirthlin, M. J., Hutchins, B. L. & Gilson, K. L.
(1994), The Nano Processor: a Low Resource
Reconfigurable Processor,in ‘IEEE Workshop
on FPGAs for Custom Computing Machines’.

6


