
Operating System Support for Reconfigurable Processors in a
Workstation Enviornment

Michael Dales

Department of Computing Science, University of Glasgow,
17 Lilybank Gardens, Glasgow, G12 8RZ, Scotland.

michael@dcs.gla.ac.uk

Abstract

Reconfigurable processors, which combine run time pro-
grammable hardware and microprocessors on the same
chip, are becoming popular in the embedded systems do-
main. They allow application specific logic to be loaded
onto the processor and then controlled from software.
Such an ability could be useful for accelerating applica-
tions on a workstation. However, integrating such a de-
vice into a workstation environment is not a straight for-
ward task. The reconfigurable hardware resource on such
a device would need to be shared easily, fairly, and se-
curely, which will require changes at the hardware, oper-
ating system, and programming environment level. In this
paper we outline the problems that need to be overcome
when managing this new resource, and how we plan to
solve them.

1 Motivation

Field Programmable Logic (FPL) devices, such as Field
Programmable Gate Arrays (FPGAs), are an increasingly
attractive solution for providing custom hardware in em-
bedded systems. FPL devices are Integrated Circuits
(ICs) that can have their functionality defined at run time.
An FPL device consists of a two dimensional array of
cells, which typically contain a set of logic elements
such as registers, multiplexors, and small Look Up Ta-
bles (LUTs). Each cell is surrounded by a set of wiring
resources to which cells may be attached. By configur-
ing the contents of each cell and which cells are attached

to which wires, sequential logic circuits can, in effect, be
loaded onto the device. The behaviour of the cells and
routing is controlled by SRAM on the device. Configura-
tion data, referred to as abitstream, can be loaded into the
SRAM to set the behaviour of the device; reconfiguring
the device is just a matter of reprogramming the SRAM.
Despite relatively slow configuration times (of the order
of several milliseconds), the benefits of custom hardware
are numerous, most notably it is cheaper for prototyping
than generating custom ASICs, and it can be upgraded in
the field.

A recent development is the coupling of microproces-
sors and FPL on a single device for use in embedded sys-
tems. Despite the benefits of custom hardware, a lot of
problems still need software as part of the solution, typi-
cally for doing control flow. There have been both numer-
ous commercial [1,15] and research projects [7,9,12,13]
(to mention but a few) to address this need. In such a
system, application specific logic, such as custom I/O in-
terfaces or algorithm accelerators, can be loaded onto the
FPL part of the device and then controlled from software
running on the processor. Despite uptake in the embed-
ded systems environment, there has been little work done
on integrating such a device into a workstation environ-
ment. Moving from an embedded systems environment
to a workstation environment, however, imposes a new
set of demands and restrictions. Such integration will re-
quire changes to the application programming model, the
operating system, and the hardware.

The first obvious difference between the two environ-
ments is that the finite FPL resource will need to be shared

1



between a dynamic set of competing processes with un-
predictable resource demands. Given the large number
of processes a workstation can potentially run at a single
time, and the scarcity of the FPL resource, it is vital that
the operating system can share out the FPL resource fairly.
Although modern FPL devices can theoretically support
circuits of millions of gates, they are quickly consumed
by a number of reasonably sized circuits, especially when
being shared between applications. As a result, in addi-
tion to allocating FPL space, we expect the operating sys-
tem to have to move circuits on and off the processor as
demand dictates. Given that the cost of moving configura-
tion data on and off an FPL device is quite high, this could
potentially mean that the benefit of having the resource
could be negated by the management overheads associ-
ated with it. Security in a workstation environment is also
of great concern. Unlike an embedded system, where the
system runs a limited trusted set of tasks, a workstation is
much more open to malicious or accidental abuse. If a re-
configurable processor was misconfigured, then not only
could the attack damage data, but it could also destroy the
processor itself [5].

The focus of this paper is to outline how we plan to
tackle the operating system management issues in inte-
grating a reconfigurable processor into a workstation en-
vironment, based on previous work which demonstrated a
suitable hardware architecture [4].

2 Overall Approach

The aim of this work is to examine how a traditionally
structured operating system could be used in conjunction
with a suitably structured reconfigurable processor (see
Section 3). The idea is to demonstrate that a full work-
station class operating system and programming environ-
ment could integrate the additional FPL environment. In
this section we outline the basic approach we will take.

2.1 Application Interface

In our system, programs will come with a set ofcus-
tom instructionsthat will be used to augment the existing
processor instruction set with instructions tailored specif-
ically for that process. The custom instructions will have
the same interface as a traditional instruction on the pro-

cessor, and may consist of either combinatorial or sequen-
tial logic. Custom instructions will be invoked using a
machine code instruction that encodes an identifier, the
Circuit ID (CID), specifying which circuit loaded on the
FPL the process is attempting to invoke, and the operands
specifying the source and destination locations. The only
other functions a process requires are calls to the operat-
ing system to register and unregister custom instructions
along with an associated CID. All other operations, in-
cluding the placement and loading of custom instructions,
should be handled by the operating system.

2.2 Operating System Tasks

The operating system is charged with managing allocation
of the FPL resource between the set of active processes. In
a modern operating system, processes are presented with a
virtual machine in which they appear to have sole access
to a resource. It is the operating system’s job to multi-
plex all the processes’ use of the virtual resource onto the
physical resource. A good example of this is virtual mem-
ory. Processes have a large private address space, parts of
which the operating system will map onto physical mem-
ory as needed. Physical memory may contain parts of
many virtual address spaces at once. The processes re-
fer to objects in their virtual address space using virtual
addresses, which must be translated to physical addresses
before being used to access physical memory. This is all
handled in the operating system and hardware, so the pro-
cess is never aware of the virtualisation.

We propose a similar model for the FPL resource. Pro-
cesses will have a virtual instruction space, which can
contain as many instructions as there are possible CIDs.
When a process attempts to execute a custom instruction,
the operating system will attempt to load the custom in-
struction as needed. If there is no room on the FPL then it
will move existing circuits off the processor using an evic-
tion policy to make room for the incoming circuit. Once
the circuit has been loaded then it will need to program
the processor to make a mapping between the process’s
CID and the appropriate block of FPL.

2.3 Rich Custom Instructions

Previous work in harnessing reconfigurable processors
has treated the configuration bitstream as the custom in-

2



struction, but we propose a much richer data structure.
We split the configuration data into two parts: that per-
taining to stateful elements in the circuit (the registers),
and the remainder which describes the stateless elements
(the LUTs, routing, etc.). This division provides several
benefits. Firstly, it significantly reduces the amount of
data that needs to be preserved when a circuit is evicted
from the processor (by 91% in our prototype architecture
described in Section 3). Secondly, it allows the operating
system to potentially share circuits. If two or more pro-
cesses are trying to use a common configuration, then the
operating system can simply replace the stateful elements
in the circuit, rather than having to swap the entire circuit.

Although it is the aim that careful scheduling of custom
instructions by the operating system will mean that con-
figuration overheads do not slow down the system so as
to negate the benefit of the resource, this may not always
be possible. To help the operating system cope when the
FPL resource becomes heavily oversubscribed, processes
should provide a software alternative along with the con-
figuration bitstream. The operating system can then use
this to ensure that processes make progress despite not
being granted part of the FPL resource.

Thus a custom instruction becomes a combination of
the two bitstreams, the software alternative and associ-
ated meta data (e.g., status information, symbolic name).
Rather than simply being a concatenation of these parts
into a single object, a custom instruction is defined as a
structure of references to the separate parts. This makes
sharing and dynamic linking of parts possible [10].

3 Basic Processor Architecture

In previous work we have proposed the Proteus Archi-
tecture [4], which is an outline for a reconfigurable pro-
cessor with the FPL resource designed to be managed by
an operating system. The Proteus Architecture places the
FPL inside an additional function unit on the processor,
similar to a traditional integer or floating point unit. The
new function unit contains a register file and a set of FPL
blocks of equal fixed sized called Programmable Func-
tion Units (PFUs), into which instruction definitions can
be loaded. The PFUs’ functionality is specified at run time
by loading configuration bitstreams, allowing the proces-
sor’s instruction set to be tailored for the currently run-

ning set of processes. Configuration of FPL takes a rel-
atively long time, so the Proteus Architecture first loads
the configuration into an on-chip FIFO, which can then
be drained in parallel with the processor executing other
software.

To enable the operating system to virtualise the recon-
figurable resource, processes do not directly invoke spe-
cific PFUs. The operating system will be responsible for
loading custom instructions into PFUs, so a process does
not know at link time where the instruction will be loaded.
The custom instruction may be loaded in a PFU, may be
being dispatched to software, or may not be loaded yet.
To support this, a dispatch mechanism is added to the pro-
cessor to decode CIDs as they are invoked. The dispatch
mechanism will either convert the CID to a PFU reference
and decode the instruction as a PFU invocation, convert
the CID to a memory address at which the software alter-
native is located and decode the instruction as a branch
instruction, or the CID will not be decoded and the oper-
ating system will be invoked to handle the fault. It is the
operating system’s role to ensure that the dispatch table
has a correct set of mappings to ensure system integrity
and security. To prevent the dispatch hardware from re-
quiring to be flushed on a context switch, each mapping
contains the PID of the process it belongs to. This is used
to form a system unique mapping for each instruction.

To aid the operating system in making good circuit
eviction selections, the processor provides two basic
counters with each PFU. One counter tracks the number
of times that the associated PFU has been invoked since
the register was last reset, the other counter contains the
value copied from a global counter which is increased ev-
ery time a PFU is either reconfigured or invoked. This
provides sufficient information for basic eviction policies
such as LRU, second chance, LFU, and so on.

We have built a simulation model of a prototype archi-
tecture, based around the ARM processor, which adds a
reconfigurable execution unit to the ARM core. The re-
configurable unit consists of a 32 by 32 bit register file
and eight PFUs, which are based on the Xilinx Virtex
FPGA fabric [14]. The PFUs are of sufficient size to hold
a reasonably complex circuit. For example, we have an
alpha blend instruction that sums two 32 bit RGBA pix-
els, which requires ten Booth’s multipliers, three dividers,
and three adders. This architecture has been demonstrated
to provide a group of basic programs running individually

3



on the system with a substantial performance increase.

4 Operating System Structure

For this work we are assuming an operating system struc-
ture similar to that of a Unix implementation, such as
BSD, or a Microsoft Windows NT derivative. This means
that we have a pre-emptively multitasked, multiuser envi-
ronment, where each process has a private virtual address
space.

The focus is to extend the operating system with a Cus-
tom Instruction Scheduler (CIS), which is responsible for
managing processes’ custom instructions. Processes will
make a system call to associate a custom instruction with
a CID. It is then the operating system’s responsibility to
ensure the custom instruction executes when the process
requests it. There are obvious parallels between managing
PFUs and virtual memory pages.

The basic model uses a demand-loading system,
whereby when a process first invokes a CID, the dispatch
mechanism fails and causes the operating system to be
invoked, at which point the custom instruction can be
loaded. If there is a free PFU then the operating system
can load the custom instruction’s bitstreams into it, load
the appropriate mapping into the dispatch hardware, and
then reissue the faulted process. If there are no free PFUs,
then the operating system will have to make a policy deci-
sion and either choose an instruction to evict from a PFU,
or use the software dispatch. In earlier work we have
noted that configuration costs for a single circuit can be
amortised over a reasonable scheduling quanta (we tested
as low as1 ms), so the default policy would be to evict
a custom instruction, using on a history-based algorithm
similar to those used for page eviction. The operating sys-
tem will need to preserve the state of the evicted circuit if
necessary before reloading the PFU, updating the dispatch
mapping, and reissuing the process. During loading the
processor can run other code, allowing the operating sys-
tem to issue another process to execute whilst the original
process is blocked during loading.

Although we believe that for light levels of contention
the basic scheduler outline above will suffice, it is possible
for the FPL resource to become congested due to exces-
sive requests. This problem is particularly noticeable if a
process uses multiple instructions in a tight loop, where

it might have problems getting all the instructions loaded
at once, and thus spend most of its time waiting for cir-
cuits to load. To solve this, we plan to investigate the use
of a second level scheduler, based on run-time statistics
monitoring similar to that used to calculate process prior-
ities in BSD [8]. Using a periodic monitor, the operating
system will attempt to detect when PFUs are being recon-
figured excessively. At this point, the operating system
can switch policy and start moving custom instructions to
their software alternative, ensuring that all processes can
again make progress.

In addition to scheduling circuits, the operating system
is in a position to attempt to manage how they are used, in
particular trying to share circuit usage if at all possible. It
is possible that common libraries of custom instructions
may be used (e.g., a SIMD arithmetic library), and the
operating system should attempt to map multiple circuit
instances onto the same PFU, reducing a complete circuit
switch to just a potential state switch. To do this the op-
erating system needs a way of knowing when custom in-
structions are the same. Note that we are only concerned
whether the static bitstream of the circuit is the same;
there is no benefit from sharing the rest of the custom in-
struction. Doing a bit-wise comparison of each instruc-
tion as it is registered is potentially expensive. Instead,
we provide each instruction with a short name, such as
an MD5 checksum, which can be compared during regis-
tration; a match would then cause a bit-wise comparison
to be used. All this would be done transparently so the
process does not need to manage sharing.

5 Related Work

Although there has been no work to date examining the
management of a reconfigurable processor in a worksta-
tion environment, there has been a lot of research in man-
aging FPGAs. For systems where a FPGA is connected to
a controlling processor, there have been attempts to pro-
vide middleware that manages the FPGA, similar to our
CIS. Both [2] and [3] define an interface whereby pro-
cesses register circuits with the system for later use, then
request that the system loads their circuits, and finally re-
quest their invocation. The scheduling in this system is
made more complicated due to the problems of schedul-
ing arbitrary sized circuits on an FPGA.

4



Another related avenue of research is that of configura-
tion caching, which considers when to load circuits onto
an FPGA for use, in an attempt to minimise the number
of configurations required [6, 11]. Techniques are pro-
posed for predicting FPL usage: off-line analysis, invo-
cation patterns, and recent history techniques. However,
the work is based on the more predictable embedded sys-
tems environment, and only the recent history techniques
would be useful in the dynamic and unpredictable work-
station environment.

6 Conclusion

We have outlined the need for investigation into operating
system support for reconfigurable processors for use in a
general purpose workstation environment. We have out-
lined a possible way of solving the problems, and are cur-
rently attempting to implement a small operating system
kernel with CIS to test the practicability of this technique.

The author would like to thank his proof readers, Prof.
Joe Sventek and Jonathan Paisley, for their invaluable in-
put, and to Xilinx who have sponsored the work.

References

[1]Altera. ARM Based Embeeded Processor Device
Overview. Altera, 2001.

[2]Gordon Brebner. A virtual hardware operating sys-
tem for the Xilinx XC6200. In6th International
Workshop on Field Programmable Logic and Appli-
cations, pages 327–336, September 1996.

[3]J. Burns, A. Donlin, J. Hogg, S. Singh, and M de Wit.
A dynamic reconfiguration run-time system. InPro-
ceedings of IEEE Workshop on FPGAs for Custom
Computing Machines, pages 66–75, April 1997.

[4]Michael Dales. Managing a Reconfigurable Proces-
sor in a General Purpose Workstation Environment.
In Design, Automation, and Testing in Europe, March
2003. to be published.

[5] Ilija Hadžiǵ, Sanjay Udani, and Jonathan M. Smith.
FPGA Viruses. In9th International Workshop on

Field Programmable Logic and Applications, pages
291–300, September 1999.

[6]Scott Hauck, Zhiyuan Li, and Katherine Compton.
Configuration Caching Techniques for FPGA. In
IEEE Workshop on FPGAs for Custom Computing
Machines, April 2000.

[7]John R. Hauser and John Wawrzynek. GARP: A
MIPS processor with a reconfigurable coprocessor. In
Proceedings of IEEE Workshop on FPGAs for Cus-
tom Computing Machines, pages 12–21, April 1997.

[8]Marshal Kirk McKusick, Keith Bostic, Michael J.
Karels, and John S. Quaterman.The Design and
Implementation of the 4.4 BSD Operating System.
Addison-Wesley Publishing Company, 1996.

[9]Rahul Razdan and Michael D. Smith. High-
Performance Microarchitectures with Hardware–
Programmable Functional Units. InProc. 27th An-
nual IEEE/ACM International Symposium on Mi-
croarchitecture, pages 172–180, November 1994.

[10]J. H. Saltzer. Naming and Binding of Objects. In
Number 60 in Lecture Notes in Computing Science,
pages 99–208. Springer-Verlag, 1978.

[11]Sejar Sudhir, Suman Nath, and Seth Copen Gold-
stein. Configuration Caching and Swapping. In11th
International Conference on Field Programmable
Logic and Applications, pages 192–202, August
2001.

[12]M. J. Wirthlin and B. L. Hutchings. A dynamic in-
struction set computer. InProceedings of IEEE Work-
shop on FPGAs for Custom Computing Machines,
pages 99–107, April 1995.

[13]Ralph D. Wittig and Paul Chow. OneChip: An FPGA
Processor With Reconfigurable Logic. InIEEE Work-
shop on FPGAs for Custom Computing Machines,
pages 126–135, 1996.

[14]Xilinx. The Programmable Logic Data Book 1999.
Xilinx, 1999.

[15]Xilinx. Virtex-II Pro Platform FPGA Handbook. Xil-
inx, 2002.

5


