Operating System Support for Reconfigurable Processors in a
Workstation Enviornment

Michael Dales

Department of Computing Science, University of Glasgow,
17 Lilybank Gardens, Glasgow, G12 8RZ, Scotland.
michael@dcs.gla.ac.uk

Abstract to which wires, sequential logic circuits can, in effect, be
loaded onto the device. The behaviour of the cells and
Reconfigurable processors, which combine run time pieuting is controlled by SRAM on the device. Configura-
grammable hardware and microprocessors on the s&ioa data, referred to ashitstream can be loaded into the
chip, are becoming popular in the embedded systems RAM to set the behaviour of the device; reconfiguring
main. They allow application specific logic to be loadeghe device is just a matter of reprogramming the SRAM.
onto the processor and then controlled from softwamespite relatively slow configuration times (of the order
Such an ability could be useful for accelerating applicaf several milliseconds), the benefits of custom hardware
tions on a workstation. However, integrating such a dere numerous, most notably it is cheaper for prototyping
vice into a workstation environment is not a straight fothan generating custom ASICs, and it can be upgraded in
ward task. The reconfigurable hardware resource on stieé field.
a device would need to be shared easily, fairly, and se- . . .
. . . A recent development is the coupling of microproces-
curely, which will require changes at the hardware, oper- . . .
. . . sors and FPL on a single device for use in embedded sys-
ating system, and programming environment level. In tfps : ,
; ems. Despite the benefits of custom hardware, a lot of
paper we outline the problems that need to be overcorme . ; .
. . roblems still need software as part of the solution, typi-
when managing this new resource, and how we plan’to .
solve them cally for domg_ control flow. There have b_een both numer-
' ous commercial [1, 15] and research projects [7,9,12, 13]
(to mention but a few) to address this need. In such a
1 Motivation system, appllcat!on specific logic, such as custom I/O in-
terfaces or algorithm accelerators, can be loaded onto the

Field Programmable Logic (FPL) devices, such as Fie'I:(!iaL_part of the device and then <_:ontr0||ed f_rom software
nning on the processor. Despite uptake in the embed-

Programmable Gate Arrays (FPGAS), are an increasin . .
d s () led systems environment, there has been little work done

attractive solution for providing custom hardware in e . . o : .
bedded systems. FPL devices are Integrated Circ L integrating such a device into a workstation environ-
ent. Moving from an embedded systems environment

(ICs) that can have their functionality defined at run tim&!

An FPL device consists of a two dimensional array 6? ta ¥v§rk5tat(|jon egwro:lr_n?nt, hoswe\;]e_r, tlmpotses a_”new
cells, which typically contain a set of logic element et of demands and restrictions. such integration wit re-

such as registers, multiplexors, and small Look Up Tgyire changes to the application programming model, the

bles (LUTs). Each cell is surrounded by a set of Wirin%peratlng system, and the hardware.
resources to which cells may be attached. By configur-The first obvious difference between the two environ-
ing the contents of each cell and which cells are attach@énts is that the finite FPL resource will need to be shared

between a dynamic set of competing processes with wessor, and may consist of either combinatorial or sequen-
predictable resource demands. Given the large numbal logic. Custom instructions will be invoked using a
of processes a workstation can potentially run at a singl&chine code instruction that encodes an identifier, the
time, and the scarcity of the FPL resource, it is vital th&ircuit ID (CID), specifying which circuit loaded on the
the operating system can share out the FPL resource faifyL the process is attempting to invoke, and the operands
Although modern FPL devices can theoretically suppapecifying the source and destination locations. The only
circuits of millions of gates, they are quickly consumedther functions a process requires are calls to the operat-
by a number of reasonably sized circuits, especially whigig system to register and unregister custom instructions
being shared between applications. As a result, in addieng with an associated CID. All other operations, in-
tion to allocating FPL space, we expect the operating syduding the placement and loading of custom instructions,
tem to have to move circuits on and off the processor stsould be handled by the operating system.
demand dictates. Given that the cost of moving configura-
tion data on and off an FPL device is quite high, this cou@_z
potentially mean that the benefit of having the resource
could be negated by the management overheads assbeée operating system is charged with managing allocation
ated with it. Security in a workstation environment is alsaf the FPL resource between the set of active processes. In
of great concern. Unlike an embedded system, where thmodern operating system, processes are presented with a
system runs a limited trusted set of tasks, a workstatiorvigual machine in which they appear to have sole access
much more open to malicious or accidental abuse. If a te-a resource. It is the operating system’s job to multi-
configurable processor was misconfigured, then not omplgx all the processes’ use of the virtual resource onto the
could the attack damage data, but it could also destroy titg/sical resource. A good example of this is virtual mem-
processor itself [5]. ory. Processes have a large private address space, parts of
The focus of this paper is to outline how we plan tehich the operating system will map onto physical mem-
tackle the operating system management issues in imig¢ as needed. Physical memory may contain parts of
grating a reconfigurable processor into a workstation enany virtual address spaces at once. The processes re-
vironment, based on previous work which demonstratedesi to objects in their virtual address space using virtual
suitable hardware architecture [4]. addresses, which must be translated to physical addresses
before being used to access physical memory. This is all
handled in the operating system and hardware, so the pro-
2 Overall Approach cess is never aware of the virtualisation.
We propose a similar model for the FPL resource. Pro-
The aim of this work is to examine how a traditionallgesses will have a virtual instruction space, which can
structured operating system could be used in conjuncti@sntain as many instructions as there are possible CIDs.
with a suitably structured reconfigurable processor (S@gen a process attempts to execute a custom instruction,
Section 3). The idea is to demonstrate that a full worihe operating system will attempt to load the custom in-
station class operating system and programming envirggruction as needed. If there is no room on the FPL then it
ment could integrate the additional FPL environment. {iill move existing circuits off the processor using an evic-
this section we outline the basic approach we will take.tion policy to make room for the incoming circuit. Once
the circuit has been loaded then it will need to program
the processor to make a mapping between the process’s
CID and the appropriate block of FPL.

Operating System Tasks

2.1 Application Interface

In our system, programs will come with a set ais-

tom instructionghat will be used to augment the existin 3 Rich Custom Instructions

processor instruction set with instructions tailored specif-

ically for that process. The custom instructions will hav@revious work in harnessing reconfigurable processors
the same interface as a traditional instruction on the piwas treated the configuration bitstream as the custom in-

struction, but we propose a much richer data structuréng set of processes. Configuration of FPL takes a rel-
We split the configuration data into two parts: that peatively long time, so the Proteus Architecture first loads
taining to stateful elements in the circuit (the registerghe configuration into an on-chip FIFO, which can then
and the remainder which describes the stateless eleméetsirained in parallel with the processor executing other
(the LUTSs, routing, etc.). This division provides severalboftware.
benefits. Firstly, it significantly reduces the amount of To enable the operating system to virtualise the recon-
data that needs to be preserved when a circuit is evicfigirable resource, processes do not directly invoke spe-
from the processor (by 91% in our prototype architectucdic PFUs. The operating system will be responsible for
described in Section 3). Secondly, it allows the operatif@gading custom instructions into PFUs, so a process does
system to potentially share circuits. If two or more praiot know at link time where the instruction will be loaded.
cesses are trying to use a common configuration, then Tee custom instruction may be loaded in a PFU, may be
operating system can simply replace the stateful elemelmésng dispatched to software, or may not be loaded yet.
in the circuit, rather than having to swap the entire circuifo support this, a dispatch mechanism is added to the pro-
Although it is the aim that careful scheduling of custoressor to decode CIDs as they are invoked. The dispatch
instructions by the operating system will mean that comechanism will either convert the CID to a PFU reference
figuration overheads do not slow down the system soa® decode the instruction as a PFU invocation, convert
to negate the benefit of the resource, this may not alwdls CID to a memory address at which the software alter-
be possible. To help the operating system cope when tiadive is located and decode the instruction as a branch
FPL resource becomes heavily oversubscribed, processsguction, or the CID will not be decoded and the oper-
should provide a software alternative along with the coating system will be invoked to handle the fault. It is the
figuration bitstream. The operating system can then uggerating system’s role to ensure that the dispatch table
this to ensure that processes make progress despitehasta correct set of mappings to ensure system integrity
being granted part of the FPL resource. and security. To prevent the dispatch hardware from re-
Thus a custom instruction becomes a combination @ifiring to be flushed on a context switch, each mapping
the two bitstreams, the software alternative and assagpntains the PID of the process it belongs to. This is used
ated meta data (e.g., status information, symbolic nam@)form a system unique mapping for each instruction.
Rather than simply being a concatenation of these partgo aid the operating system in making good circuit
into a single object, a custom instruction is defined aswiction selections, the processor provides two basic
structure of references to the separate parts. This makegnters with each PFU. One counter tracks the number
sharing and dynamic linking of parts possible [10]. of times that the associated PFU has been invoked since
the register was last reset, the other counter contains the
value copied from a global counter which is increased ev-
3 Basic Processor Architecture ery time a PFU is either reconfigured or invoked. This
provides sufficient information for basic eviction policies
In previous work we have proposed the Proteus Arclsuch as LRU, second chance, LFU, and so on.
tecture [4], which is an outline for a reconfigurable pro- We have built a simulation model of a prototype archi-
cessor with the FPL resource designed to be manageddsture, based around the ARM processor, which adds a
an operating system. The Proteus Architecture places theonfigurable execution unit to the ARM core. The re-
FPL inside an additional function unit on the processamnfigurable unit consists of a 32 by 32 bit register file
similar to a traditional integer or floating point unit. Thend eight PFUs, which are based on the Xilinx Virtex
new function unit contains a register file and a set of FFRPGA fabric [14]. The PFUs are of sufficient size to hold
blocks of equal fixed sized called Programmable Fure+easonably complex circuit. For example, we have an
tion Units (PFUSs), into which instruction definitions camlpha blend instruction that sums two 32 bit RGBA pix-
be loaded. The PFUs'’ functionality is specified at run tineds, which requires ten Booth’s multipliers, three dividers,
by loading configuration bitstreams, allowing the proceand three adders. This architecture has been demonstrated
sor’s instruction set to be tailored for the currently rurie provide a group of basic programs running individually

on the system with a substantial performance increaseit might have problems getting all the instructions loaded
at once, and thus spend most of its time waiting for cir-
) cuits to load. To solve this, we plan to investigate the use
4 Operating System Structure of a second level scheduler, based on run-time statistics
monitoring similar to that used to calculate process prior-
For this work we are assuming an operating system strities in BSD [8]. Using a periodic monitor, the operating
ture similar to that of a Unix implementation, such asystem will attempt to detect when PFUs are being recon-
BSD, or a Microsoft Windows NT derivative. This meanfigured excessively. At this point, the operating system
that we have a pre-emptively multitasked, multiuser endan switch policy and start moving custom instructions to
ronment, where each process has a private virtual addnggsr software alternative, ensuring that all processes can
space. again make progress.

The focus is to extend the operating system with a Cusn addition to scheduling circuits, the operating system
tom Instruction Scheduler (CIS), which is responsible f@ in a position to attempt to manage how they are used, in
managing processes’ custom instructions. Processes paliticular trying to share circuit usage if at all possible. It
make a system call to associate a custom instruction Wihpossible that common libraries of custom instructions
a CID. It is then the operating system’s responsibility iday be used (e.g., a SIMD arithmetic library), and the
ensure the custom instruction executes when the procggserating system should attempt to map multiple circuit
requests it. There are obvious parallels between managdifigances onto the same PFU, reducing a complete circuit
PFUs and virtual memory pages. switch to just a potential state switch. To do this the op-

The basic model uses a demand-loading systegrating system needs a way of knowing when custom in-
whereby when a process first invokes a CID, the dispatsiiuctions are the same. Note that we are only concerned
mechanism fails and causes the operating system towdtether the static bitstream of the circuit is the same;
invoked, at which point the custom instruction can kere is no benefit from sharing the rest of the custom in-
loaded. If there is a free PFU then the operating syst&uction. Doing a bit-wise comparison of each instruc-
can load the custom instruction’s bitstreams into it, loan as it is registered is potentially expensive. Instead,
the appropriate mapping into the dispatch hardware, and provide each instruction with a short name, such as
then reissue the faulted process. If there are no free PFal$ MD5 checksum, which can be compared during regis-
then the operating system will have to make a policy degiation; a match would then cause a bit-wise comparison
sion and either choose an instruction to evict from a PHd, be used. All this would be done transparently so the
or use the software dispatch. In earlier work we haygocess does not need to manage sharing.
noted that configuration costs for a single circuit can be
amortised over a reasonable scheduling quanta (we tested
as low asl ms), so the default policy would be to evich Related Work
a custom instruction, using on a history-based algorithm
similar to those used for page eviction. The operating sysithough there has been no work to date examining the
tem will need to preserve the state of the evicted circuitrifanagement of a reconfigurable processor in a worksta-
necessary before reloading the PFU, updating the dispaioh environment, there has been a lot of research in man-
mapping, and reissuing the process. During loading thging FPGAs. For systems where a FPGA is connected to
processor can run other code, allowing the operating sgseontrolling processor, there have been attempts to pro-
tem to issue another process to execute whilst the originale middleware that manages the FPGA, similar to our
process is blocked during loading. CIS. Both [2] and [3] define an interface whereby pro-

Although we believe that for light levels of contentiortesses register circuits with the system for later use, then
the basic scheduler outline above will suffice, it is possiblequest that the system loads their circuits, and finally re-
for the FPL resource to become congested due to exagsest their invocation. The scheduling in this system is
sive requests. This problem is particularly noticeable ifrmade more complicated due to the problems of schedul-
process uses multiple instructions in a tight loop, wheirgg arbitrary sized circuits on an FPGA.

Another related avenue of research is that of configura- Field Programmable Logic and Applicationpages
tion caching, which considers when to load circuits onto 291-300, September 1999.
an FPGA for use, in an attempt to minimise the number . . .
of configurations required [6, 11]. Techniques are pro[6]SC°tt_ Haugk, Zhlyugn Li, and_ Katherine Compton.
posed for predicting FPL usage: off-line analysis, invo- Configuration Caching Techniques for FPGA. In
cation patterns, and recent history techniques. However, IEEE_Workshpp on FPGAs for Custom Computing
the work is based on the more predictable embedded sys- Machines April 2000.

tems environment, and only the recent history techniqug§$]john R. Hauser and John Wawrzynek. GARP: A

would be useful in the dynamic and unpredictable work- v |ps processor with a reconfigurable coprocessor. In

station environment. Proceedings of IEEE Workshop on FPGAs for Cus-
tom Computing Machinepages 12-21, April 1997.

6 Conclusion [8]Marshal Kirk McKusick, Keith Bostic, Michael J.
Karels, and John S. QuatermariThe Design and
We have outlined the need for investigation into operating Implementation of the 4.4 BSD Operating System
system support for reconfigurable processors for use in a Addison-Wesley Publishing Company, 1996.
general purpose workstation environment. We have ou- . . .
lined a possible way of solving the problems, and are cu 9|Rahul Razdan _and M|(_;hael D. S_m|th. High-
rently attempting to implement a small operating system Performance M|croa.rch|tectulres with - Hardware—
kernel with CIS to test the practicability of this technique. Programmable Funcuonql units. I?roc._ 27th An- .
The author would like to thank his proof readers, Prof. nual IE.EE/ACM International Symposium on Mi-
Joe Sventek and Jonathan Paisley, for their invaluable in- croarchitecture pages 172-180, November 1994.

put, and to Xilinx who have sponsored the work. [10]J. H. Saltzer. Naming and Binding of Objects. In
Number 60 in Lecture Notes in Computing Science
pages 99-208. Springer-Verlag, 1978.
References
[11]Sejar Sudhir, Suman Nath, and Seth Copen Gold-
[1]Altera. ARM Based Embeeded Processor Device Stein. Configuration Caching and Swapping.1lith
Overview Altera, 2001. International Conference on Field Programmable
Logic and Applications pages 192-202, August
[2]Gordon Brebner. A virtual hardware operating sys- 2001.
tem for the Xilinx XC6200. In6th International

Workshop on Field Programmable Logic and App|{_12]M. J. Wirthlin and B. L. Hutchings. A dynamic in-
cations pages 327-336, September 1996. struction set computer. lRroceedings of IEEE Work-

shop on FPGAs for Custom Computing Machines
[3]J. Burns, A. Donlin, J. Hogg, S. Singh, and M de Wit. pages 99-107, April 1995.

A dynamic reconfiguration run-time system. Pno- - :
. 13]Ralph D. Wittig and Paul Chow. OneChip: An FPGA
ceedings of IEEE Workshop on FPGAS for Custo[m Processor With Reconfigurable Logic.|EEE Work-

Computing Machingspages 66-75, April 1997. shop on FPGAs for Custom Computing Machines
[4]Michael Dales. Managing a Reconfigurable Proces- Pages 126-135, 1996.

sor in a General Purpose Workstation Environmemi4)xijinx. The Programmable Logic Data Book 1999

In Design, Automation, and Testing in Européarch Xilinx. 1999.

2003. to be published. '

[15] Xilinx. Virtex-ll Pro Platform FPGA HandboaokXil-
[5]llija Hadzig, Sanjay Udani, and Jonathan M. Smith. inx, 2002.

FPGA Viruses. In9th International Workshop on

